scholarly journals The Characteristics of Tumor Microenvironment in Triple Negative Breast Cancer

2022 ◽  
Vol Volume 14 ◽  
pp. 1-17
Author(s):  
Yiqi Fan ◽  
Shuai He
Author(s):  
H. Kuroda ◽  
T. Jamiyan ◽  
R. Yamaguchi ◽  
A. Kakumoto ◽  
A. Abe ◽  
...  

Abstract Purpose Immune cells such as cytotoxic T cells, helper T cells, B cells or tumor-associated macrophages (TAMs) contribute to the anti-tumor response or pro-tumorigenic effect in triple negative breast cancer (TNBC). The interrelation of TAMs, T and B tumor-infiltrating lymphocytes (TILs) in TNBC has not been fully elucidated. Methods We evaluated the association of tumor-associated macrophages, T and B TILs in TNBC. Results TNBCs with a high CD68+, CD163+ TAMs and low CD4+, CD8+, CD20+ TILs had a significantly shorter relapse-free survival (RFS) and overall survival (OS) than those with low CD68+, CD163+ TAMs and high CD4+, CD8+, CD20+ TILs. TNBCs with high CD68+ TAMs/low CD8+ TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD68+ TAMs/high CD8+ TILs, low CD68+ TAMs/high CD8+ TILs, and low CD68+/low CD8+. TNBCs with high CD163+ TAMs/low CD8+, low CD20 + TILs showed a significantly shorter RFS and OS and a significantly poorer prognosis than those with high CD163+ TAMs/high CD8+ TILs and high CD163+ TAMs /high CD20+ TILs. Conclusions Our study suggests that TAMs further create an optimal tumor microenvironment (TME) for growth and invasion of cancer cells when evasion of immunoreactions due to T and B TILs occurs. In TNBCs, all these events combine to affect prognosis. The process of TME is highly complex in TNBCs and for an improved understanding, larger validation studies are necessary to confirm these findings.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3357
Author(s):  
Hongmei Zheng ◽  
Sumit Siddharth ◽  
Sheetal Parida ◽  
Xinhong Wu ◽  
Dipali Sharma

Triple negative breast cancer (TNBC) is a heterogeneous disease and is highly related to immunomodulation. As we know, the most effective approach to treat TNBC so far is still chemotherapy. Chemotherapy can induce immunogenic cell death, release of damage-associated molecular patterns (DAMPs), and tumor microenvironment (TME) remodeling; therefore, it will be interesting to investigate the relationship between chemotherapy-induced TME changes and TNBC immunomodulation. In this review, we focus on the immunosuppressive and immunoreactive role of TME in TNBC immunomodulation and the contribution of TME constituents to TNBC subtype classification. Further, we also discuss the role of chemotherapy-induced TME remodeling in modulating TNBC immune response and tumor progression with emphasis on DAMPs-associated molecules including high mobility group box1 (HMGB1), exosomes, and sphingosine-1-phosphate receptor 1 (S1PR1), which may provide us with new clues to explore effective combined treatment options for TNBC.


2020 ◽  
Vol 21 (23) ◽  
pp. 8905
Author(s):  
Amal Qattan

Treatment of triple-negative breast cancer (TNBC) remains challenging because of the heterogeneity of the disease and lack of single targetable driving mutations. TNBC does not rely on estrogen, progesterone or epidermal growth factor receptors and is associated with aggressive disease progression and poor prognosis. TNBC is also characterized by resistance to chemotherapeutics, and response to immunotherapies is limited despite promising results in a subset of TNBC patients. MicroRNAs (miRNAs) have emerged as significant drivers of tumorigenesis and tumor progression in triple-negative breast cancer (TNBC) and present unique opportunities to target various components of the TNBC microenvironment for improved efficacy against this difficult to treat cancer. Effects of miRNAs on multiple targets may improve response rates in the context of this genetically and biologically heterogeneous disease. In this review, we offer a comprehensive view of miRNA regulation in TNBC, treatment challenges presented by TNBC in the context of the tumor microenvironment and stem cell subpopulations, and current and emerging miRNA-based therapeutic strategies targeting various components of the TNBC microenvironment. In addition, we offer insight into novel targets that have potential for treating TNBC through multiple mechanisms in the tumor microenvironment simultaneously and those that may be synergistic with standard chemotherapies.


2020 ◽  
Vol 153 ◽  
pp. 104683 ◽  
Author(s):  
K.G.K. Deepak ◽  
Rahul Vempati ◽  
Ganji Purnachandra Nagaraju ◽  
Venkata Ramesh Dasari ◽  
Nagini S. ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Jiarong Yi ◽  
Wenjing Zhong ◽  
Haoming Wu ◽  
Jikun Feng ◽  
Xiazi Zouxu ◽  
...  

Although the tumor microenvironment (TME) plays an important role in the development of many cancers, its roles in breast cancer, especially triple-negative breast cancer (TNBC), are not well studied. This study aimed to identify genes related to the TME and prognosis of TNBC. Firstly, we identified differentially expressed genes (DEG) in the TME of TNBC, using Expression data (ESTIMATE) datasets obtained from the Cancer Genome Atlas (TCGA) and Estimation of Stromal and Immune cells in Malignant Tumor tissues. Next, survival analysis was performed to analyze the relationship between TME and prognosis of TNBC, as well as determine DEGs. Genes showing significant differences were scored as alternative genes. A protein-protein interaction (PPI) network was constructed and functional enrichment analysis conducted using the DEG. Proteins with a degree greater than 5 and 10 in the PPI network correspond with hub genes and key genes, respectively. Finally, CCR2 and CCR5 were identified as key genes in TME and prognosis of TNBC. Finally, these results were verified using Gene Expression Omnibus (GEO) datasets and immunohistochemistry of TNBC patients. In conclusion, CCR2 and CCR5 are key genes in the TME and prognosis of TNBC with the potential of prognostic biomarkers in TNBC.


2021 ◽  
Vol 22 (24) ◽  
pp. 13571
Author(s):  
Tai-Na Wu ◽  
Hui-Ming Chen ◽  
Lie-Fen Shyur

Triple-negative breast cancer (TNBC) is defined based on the absence of estrogen, progesterone, and human epidermal growth factor receptor 2 receptors. Currently, chemotherapy is the major therapeutic approach for TNBC patients; however, poor prognosis after a standard chemotherapy regimen is still commonplace due to drug resistance. Abnormal tumor metabolism and infiltrated immune or stromal cells in the tumor microenvironment (TME) may orchestrate mammary tumor growth and metastasis or give rise to new subsets of cancer cells resistant to drug treatment. The immunosuppressive mechanisms established in the TME make cancer cell clones invulnerable to immune recognition and killing, and turn immune cells into tumor-supporting cells, hence allowing cancer growth and dissemination. Phytochemicals with the potential to change the tumor metabolism or reprogram the TME may provide opportunities to suppress cancer metastasis and/or overcome chemoresistance. Furthermore, phytochemical intervention that reprograms the TME away from favoring immunoevasion and instead towards immunosurveillance may prevent TNBC metastasis and help improve the efficacy of combination therapies as phyto-adjuvants to combat drug-resistant TNBC. In this review, we summarize current findings on selected bioactive plant-derived natural products in preclinical mouse models and/or clinical trials with focus on their immunomodulatory mechanisms in the TME and their roles in regulating tumor metabolism for TNBC prevention or therapy.


Sign in / Sign up

Export Citation Format

Share Document