scholarly journals Daily Indian Precipitation Analysis Formed from a Merge of Rain-Gauge Data with the TRMM TMPA Satellite-Derived Rainfall Estimates

2009 ◽  
Vol 87A ◽  
pp. 265-279 ◽  
Author(s):  
A. K. MITRA ◽  
A. K. BOHRA ◽  
M. N. RAJEEVAN ◽  
T. N. KRISHNAMURTI
1970 ◽  
Vol 16 (1) ◽  
Author(s):  
I Wayan Sandi Adnyana ◽  
Abd. Rahman As-syakur

Rainfall erosivity is a measure for the erosive force of rainfall. Rainfall kinetic energydetermines the erosivity and is in turn greatly dependent on rainfall intensity. Research hasbeen conducted to validate monthly rainfall erosivity derived from the Tropical Rainfall MeasuringMission (TRMM) Multisatellite Precipitation Analysis(TMPA)3B43 version 7 usingraingauge data analysis from 2003 to 2012. Rain gauge located in the south Bali regions wereemployedto monitor erosivity value from two different methods that are base on Bols (1978)andAbdurachman(1989). Therelationship of erosivity and their other factor from TRMM3B43andrain gauge data statistical analysis measures consisted of the linear correlation coefficient,themean bias error (MBE), and the root mean square error (RMSE). Data validation wasconductedwith point-by-point analysis. The results of these analyses indicate that satellitedatahave lower values than the gauge estimation values. The point-by-point analysis indicatedsatellite data values of high to very high correlation, while values of MBE and RMSEtendedto indicate underestimations with high square errors. Moreover,monthly rainfall erosivityderived from TRMM give high correlation from both methods, with has high bias androot-mean-squareerror. In general, the data from TRMM3B43 version 7 are potentially usabletoreplace rain gauge data based on erosivity estimation, but after inconsistencies and errorsaretaken into account.


2014 ◽  
Vol 18 (7) ◽  
pp. 2493-2502 ◽  
Author(s):  
D. Kneis ◽  
C. Chatterjee ◽  
R. Singh

Abstract. The paper examines the quality of satellite-based precipitation estimates for the lower Mahanadi River basin (eastern India). The considered data sets known as 3B42 and 3B42-RT (version 7/7A) are routinely produced by the tropical rainfall measuring mission (TRMM) from passive microwave and infrared recordings. While the 3B42-RT data are disseminated in real time, the gauge-adjusted 3B42 data set is published with a delay of some months. The quality of the two products was assessed in a two-step procedure. First, the correspondence between the remotely sensed precipitation rates and rain gauge data was evaluated at the sub-basin scale. Second, the quality of the rainfall estimates was assessed by analysing their performance in the context of rainfall–runoff simulation. At sub-basin level (4000 to 16 000 km2) the satellite-based areal precipitation estimates were found to be moderately correlated with the gauge-based counterparts (R2 of 0.64–0.74 for 3B42 and 0.59–0.72 for 3B42-RT). Significant discrepancies between TRMM data and ground observations were identified at high-intensity levels. The rainfall depth derived from rain gauge data is often not reflected by the TRMM estimates (hit rate < 0.6 for ground-based intensities > 80 mm day-1). At the same time, the remotely sensed rainfall rates frequently exceed the gauge-based equivalents (false alarm ratios of 0.2–0.6). In addition, the real-time product 3B42-RT was found to suffer from a spatially consistent negative bias. Since the regionalisation of rain gauge data is potentially associated with a number of errors, the above results are subject to uncertainty. Hence, a validation against independent information, such as stream flow, was essential. In this case study, the outcome of rainfall–runoff simulation experiments was consistent with the above-mentioned findings. The best fit between observed and simulated stream flow was obtained if rain gauge data were used as model input (Nash–Sutcliffe index of 0.76–0.88 at gauges not affected by reservoir operation). This compares to the values of 0.71–0.78 for the gauge-adjusted TRMM 3B42 data and 0.65–0.77 for the 3B42-RT real-time data. Whether the 3B42-RT data are useful in the context of operational runoff prediction in spite of the identified problems remains a question for further research.


2021 ◽  
Author(s):  
Maximilian Graf ◽  
Abbas El Hachem ◽  
Micha Eisele ◽  
Jochen Seidel ◽  
Christian Chwala ◽  
...  

&lt;p&gt;Rain gauges and weather radars are the default sources of rainfall information. Rainfall estimates from these sensors improve our understanding of the hydrological cycle and are vital for water-resource management, agriculture, urban planning, as well as for weather, climate, and hydrological modelling. Still, due to the high spatio-temporal variability of rainfall and the specific drawbacks of the individual rainfall sensors, the rainfall variability cannot be captured completely. In the last decade, the number and availability of opportunistic rainfall sensors increased rapidly. These sensors are initially not meant to measure rainfall for scientific or operational purposes, but, if processed carefully, can be used for these cases . Here we present an analysis of two years of data from two opportunistic rainfall sensors, namely personal weather stations (PWS) and commercial microwave links (CMLs). We evaluate the performance of rainfall maps derived from these sensors on different spatial and temporal scales in Germany.&lt;/p&gt;&lt;p&gt;The data from around 15000 PWS tipping bucket-style rain gauges from the Netatmo network were accessed via Netatmos API. The data from around 4000 CMLs, which can be used to derive rainfall estimates from the rain-induced attenuation of the CMLs&amp;#8217; signal, were obtained from Ericsson. As both, PWS and CML data, can suffer from various error sources e.g. from unfavourable positioning and poor maintenance of PWS and from non-rain induced attenuation of the CMLs signal, we used a strict filtering routine. A total of seven gridded rainfall products were derived from different combinations of PWS, CML, and rain gauge data from the German Weather Service (DWD) with a geostatistical interpolation approach. This approach incorporates the uncertainty of the opportunistic sensors and the path-averaging characteristic of the CML observations.&lt;/p&gt;&lt;p&gt;To evaluate the resulting rainfall maps, we used three rain gauge data sets with different temporal and spatial scales covering the whole of Germany, the state of Rhineland-Palatinate and the city of Reutlingen, respectively. For all three reference data sets, rainfall maps from opportunistic sensors provided good agreement, with best results being derived from the combinations with PWS. Rainfall maps including CML data had the lowest bias. In a comparison with gauge adjusted radar products from the DWD, the radar products yielded better results than the rainfall maps from opportunistic sensors for the country-wide comparison of daily rainfall sums, which was carried out using the DWD&amp;#8217;s independent network of manual rain gauges. But for the hourly references covering Rhineland-Palatinate and Reutlingen, the rainfall maps derived from opportunistic sensors outperformed the radar products. These results highlight the capabilities of opportunistic rainfall sensors which could be used in many hydrometeorological applications.&lt;/p&gt;


2019 ◽  
Vol 20 (12) ◽  
pp. 2347-2365 ◽  
Author(s):  
Ali Jozaghi ◽  
Mohammad Nabatian ◽  
Seongjin Noh ◽  
Dong-Jun Seo ◽  
Lin Tang ◽  
...  

Abstract We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE.


Sign in / Sign up

Export Citation Format

Share Document