scholarly journals A Tropical Cyclone Initialization in Multi-Scale Localization with Hybrid Four Dimensional Ensemble-Variational System: Preliminary Results

SOLA ◽  
2020 ◽  
Vol 16 (0) ◽  
pp. 145-150
Author(s):  
Sujeong Lim ◽  
Hyo-Jong Song ◽  
In-Hyuk Kwon
2010 ◽  
Vol 138 (4) ◽  
pp. 1344-1367 ◽  
Author(s):  
In-Hyuk Kwon ◽  
Hyeong-Bin Cheong

Abstract A tropical cyclone initialization method with an idealized three-dimensional bogus vortex of an analytic empirical formula is presented for the track and intensity prediction. The procedure in the new method consists of four steps: the separation of the disturbance from the analysis, determination of the tropical cyclone domain, generation of symmetric bogus vortex, and merging of it with the analysis data. When separating the disturbance field, an efficient spherical high-order filter with the double-Fourier series is used whose cutoff scale can be adjusted with ease to the horizontal scale of the tropical cyclone of interest. The tropical cyclone domain is determined from the streamfunction field instead of the velocities. The axisymmetric vortex to replace the poorly resolved tropical cyclone in the analysis is designed in terms of analytic empirical functions with a careful treatment of the upper-layer flows as well as the secondary circulations. The geopotential of the vortex is given in such a way that the negative anomaly in the lower layer is changed into positive anomaly above the prescribed pressure level, which depends on the intensity of the tropical cyclone. The geopotential is then used to calculate the tangential wind and temperature using the gradient wind balance and the hydrostatic balance, respectively. The inflow and outflow in the tropical cyclone are constructed to resemble closely the observed or simulated structures under the constraint of mass balance. The bogus vortex is merged with the disturbance field with the use of matching principle so that it is not affected except near the boundary of tropical cyclone domain. The humidity of the analysis is modified to be very close to the saturation in the lower layers near the tropical cyclone center. The balanced bogus vortex of the present study is completely specified on the basis of four parameters from the Regional Specialized Meteorological Center (RSMC) report and the additional two parameters, which are derived from the analysis data. The initialization method was applied to the track and the intensity (in terms of central pressure) prediction of the TCs observed in the western North Pacific Ocean and East China Sea in 2007 with the use of the Weather Research and Forecasting (WRF) model. No significant initial jump or abrupt change was seen in either momentum or surface pressure during the time integration, thus indicating a proper tropical cyclone initialization. Relative to the results without the tropical cyclone initialization and the forecast results of RSMC Tokyo, the present method presented a great improvement in both the track and intensity prediction.


2001 ◽  
Vol 205 ◽  
pp. 66-69
Author(s):  
Margarita Karovska ◽  
T. Aldcroft ◽  
M.S. Elvis ◽  
I.N. Evans ◽  
G. Fabbiano ◽  
...  

We describe preliminary results from our study of multi-scale structures in Centaurus A (NGC 5128) obtained using the Chandra X-ray Observatory HRC-I observations. The high-angular resolution Chandra images reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. The region surrounding the Cen A nucleus, believed to be associated with a supermassive black hole, shows structures on arcsecond scales clearly resolved from the central source.


2010 ◽  
Vol 138 (8) ◽  
pp. 3298-3315 ◽  
Author(s):  
Ling-Feng Hsiao ◽  
Chi-Sann Liou ◽  
Tien-Chiang Yeh ◽  
Yong-Run Guo ◽  
Der-Song Chen ◽  
...  

Abstract This paper introduces a relocation scheme for tropical cyclone (TC) initialization in the Advanced Research Weather Research and Forecasting (ARW-WRF) model and demonstrates its application to 70 forecasts of Typhoons Sinlaku (2008), Jangmi (2008), and Linfa (2009) for which Taiwan’s Central Weather Bureau (CWB) issued typhoon warnings. An efficient and dynamically consistent TC vortex relocation scheme for the WRF terrain-following mass coordinate has been developed to improve the first guess of the TC analysis, and hence improves the tropical cyclone initialization. The vortex relocation scheme separates the first-guess atmospheric flow into a TC circulation and environmental flow, relocates the TC circulation to its observed location, and adds the relocated TC circulation back to the environmental flow to obtain the updated first guess with a correct TC position. Analysis of these typhoon cases indicates that the relocation procedure moves the typhoon circulation to the observed typhoon position without generating discontinuities or sharp gradients in the first guess. Numerical experiments with and without the vortex relocation procedure for Typhoons Sinlaku, Jangmi, and Linfa forecasts show that about 67% of the first-guess fields need a vortex relocation to correct typhoon position errors while eliminates the topographical effect. As the vortex relocation effectively removes the typhoon position errors in the analysis, the simulated typhoon tracks are considerably improved for all forecast times, especially in the early periods as large adjustments appeared without the vortex relocation. Comparison of the horizontal and vertical vortex structures shows that large errors in the first-guess fields due to an incorrect typhoon position are eliminated by the vortex relocation scheme and that the analyzed typhoon circulation is stronger and more symmetric without distortions, and better agrees with observations. The result suggests that the main difficulty of objective analysis methods [e.g., three-dimensional variational data assimilation (3DVAR)], in TC analysis comes from poor first-guess fields with incorrect TC positions rather than not enough model resolution or observations. In addition, by computing the eccentricity and correlation of the axes of the initial typhoon circulation, the distorted typhoon circulation caused by the position error without the vortex relocation scheme is demonstrated to be responsible for larger track errors. Therefore, by eliminating the typhoon position error in the first guess that avoids a distorted initial typhoon circulation, the vortex relocation scheme is able to improve the ARW-WRF typhoon initialization and forecasts particularly when using data assimilation update cycling.


2008 ◽  
Vol 136 (3) ◽  
pp. 865-879 ◽  
Author(s):  
Kun-Hsuan Chou ◽  
Chun-Chieh Wu

Abstract Issues concerning the initialization and simulation of tropical cyclones by integrating both dropwindsonde data and a bogused vortex into a mesoscale model have been studied. A method is proposed to combine dropwindsonde data with a bogused vortex for tropical cyclone initialization and to improve track and intensity prediction. A clear positive impact of this proposed method on both the tropical cyclone track and intensity forecasts in a mesoscale model is demonstrated in three cases of typhoons, including Meari (2004), Conson (2004), and Megi (2004). The effectiveness of the proposed method in improving the track and intensity forecasts is also demonstrated in the evaluation of all 10 cases of Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR) missions in 2004. This method provides a useful and practical means to improve operational tropical cyclone prediction with dropwindsonde observations.


Author(s):  
Chaehyeon C. Nam ◽  
Michael M. Bell

AbstractThe impact of vertical wind shear (VWS) on tropical cyclogenesis is examined from the synoptic to meso scales using airborne Doppler radar observations of pre-depression Hagupit during the Tropical Cyclone Structure 2008 (TCS08) / THORPEX Pacific Area Regional Campaign (T-PARC) field campaigns. The high temporal and spatial resolution observations reveal complex localized convective and vortical characteristics of a pre-depression in a sheared environment. Pre-depression Hagupit interacted with an upper-tropospheric trough during the observation period. The strong deep-layer VWS (> 20 m s−1) had a negative impact on the development through misalignment of the low and mid-level circulations and dry air intrusion. However, the low-level circulation persisted and the system ultimately formed into a tropical cyclone after it left the high-shear zone. Here we propose that a key process that enabled the pre-depression to survive through the upper-tropospheric trough interaction was persistent vorticity amplification on the meso-γ scale that was aggregated on the meso-α scale within the wave pouch. Multi-Doppler wind analysis indicates that cumulus congestus tilted the low-level horizontal vorticity into the vertical in the early stage of convective life-cycle, followed by stretching from maturing deep convection. Variations in low-level VWS on the meso-β scale affect convective organization and horizontal vorticity generation. The results provide new insights into multi-scale processes during TC genesis and the interactions of a pre-depression with VWS at various spatial scales.


Sign in / Sign up

Export Citation Format

Share Document