scholarly journals METHANE IN THE SURFACE LAYER OF THE ATMOSPHERE: CURRENT CONTENT, LONG-TERM TRENDS AND INTRAANNUAL VARIABILITY

2020 ◽  
Vol 3 ◽  
pp. 5-21
Author(s):  
V.V. Kuzovkin ◽  
◽  
S.M. Semenov ◽  
◽  
◽  
...  

The article is devoted to the empirical analysis of series of monthly mean concentrations of methane in the near-surface layer of the atmosphere from the global network of monitoring stations. They operate within the Global Atmosphere Watch (GAW) under the auspices of the World Meteorological Organization (WMO). The data is freely available at the World Data Center for Greenhouse Gases GAW/WMO (WDCGG) on its website https://gaw.kishou.go.jp/ . The temporal coverage is from the 1980s. Data series from 69 stations are considered, of which 22 stations represent the global background conditions. The rest of the stations are regional. Long-term trends in concentrations and intraannual (inter-monthly) deviations of mean monthly concentrations from long-term trends were studied. The multi-year trend was estimated using a series of 12-month running averages. To exclude systematic differences in methane concentrations, these series were adjusted to the series for the high-latitude Arctic station Alert (82° 30' N, 62° 21' W). The analysis showed that long-term trends are non-linear (including with a known pause in the growth of methane levels in 1999-2006), but are similar at most of the stations under consideration. Exceptions are 6 regional stations classified as ‘abnormal’ for methane. A possible cause of the abnormality is being under the influence of certain sources of methane (anthropogenic or natural). Long-term trends at the rest of the stations are just slightly differ from the average trend for global stations. The series of intra-annual (inter-monthly) deviations of mean monthly concentrations from long-term trends for many stations, even those located at very significant distances from each other, show high correlative similarity. However, it manifests itself at an optimal time shift from 5 months. towards earlier dates up to 6 months. towards later dates. The results of the analysis are consistent with the assumption that the intra-annual variability in methane concentration is largely driven by seasonal factors that are significantly related to latitude, including vertical mixing in the atmosphere and destruction in the troposphere in reactions with hydroxyl. The root-mean-square values of the intra-annual (inter-monthly) fluctuations in methane concentration significantly depend on latitude. The higher the latitude, the greater the overall value. Maximum values are reached in the latitudinal belt 45-50° N, and further, to the north, the Кузовкин В.В., Семенов С.М. 20 values decrease. This character of intra-annual fluctuations in the level of methane content may be explained, among other things, by significant inter-seasonal fluctuations in anthropogenic methane emissions at the indicated latitudes in countries with developed economies located in North America and Western Europe. The estimates of correlations of the series of intra-annual (inter-monthly) fluctuations of the average monthly concentrations of CH4 and CO2 showed that at optimal time shifts, they are rather high, about 0.8. Moreover, this is observed both at some polar stations and at tropical ones. This confirms the assumption that natural seasonal biogeochemical and geophysical processes play a significant role in the formation of intra-annual (inter-monthly) deviations of the methane and carbon dioxide content in the near-surface layer from long-term trends, namely, vertical mixing of air, CO2 absorption on the Earth's surface, destruction of methane in the troposphere in reactions with hydroxyl.

2020 ◽  
Vol 4 ◽  
pp. 121-133
Author(s):  
V.V. Kuzovkin ◽  
◽  
S.M. Semenov ◽  
◽  
◽  
...  

The article deals with the empirical analysis of series of monthly mean concentrations of methane in the near-surface layer of the atmosphere from the global network of monitoring stations. They operate within the Global Atmosphere Watch (GAW) under the auspices of the World Meteorological Organization (WMO). The data is freely available at the World Data Center for Greenhouse Gases GAW/WMO (WDCGG) on its website https://gaw.kishou.go.jp/. The temporal coverage is from the 1980s. Data series from 69 stations are considered, of which 22 stations represent global background conditions. The rest of the stations are regional. Long-term trends in concentrations and the intra-annual (inter-monthly) deviations of monthly mean concentrations from long-term trends were studied. The multi-year trend was estimated using a series of 12-month running averages. To exclude systematic differences in methane concentrations, these series were adjusted to the series for the high-latitude Arctic station Alert (82° 30' N, 62° 21' W). The analysis showed that long-term trends are non-linear (in particular, a known pause in the growth of methane levels in 1999-2006 is observed), but are similar at most stations under consideration. Exceptions are six regional stations classified as “abnormal” in terms of methane. Possibly, this abnormality is due to the influence of certain sources of methane (anthropogenic or natural). Long-term trends at the rest of the stations just slightly differ from the average trend for the global stations. The series of intra-annual (inter-monthly) deviations of monthly mean concentrations from long-term trends for many stations (even those located at very significant distances from each other) show high correlative similarity. However, this similarity manifests itself at an optimal time shift from 5 months towards earlier dates up to 6 months towards later dates. The results of the analysis are consistent with the assumption that the intra-annual variability in methane concentration is largely driven by seasonal factors that are significantly related to latitude, such as vertical mixing in the atmosphere and destruction in the troposphere in reactions with hydroxyl. The root-mean-square values of intra-annual (inter-monthly) fluctuations in methane concentration depend significantly on latitude. In general, the higher the latitude is, the greater is the value. The maximum values are reached in the latitudinal belt within 45-50° N, and further to the North the values decrease. This feature of intra-annual fluctuations in the level of methane content may be explained, among other things, by significant inter-seasonal fluctuations in anthropogenic methane emissions occurring at the indicated latitudes in the countries with developed economies located in North America and Western Europe. The correlations of the series of intra-annual (inter-monthly) fluctuations of the monthly mean concentrations of CH4 and CO2 were estimated as rather high, about 0.8, at optimal time shifts, which is observed both at some polar stations and at tropical ones. This confirms the assumption that natural seasonal biogeochemical and geophysical processes play a significant role in the formation of intra-annual (inter-monthly) deviations of methane and carbon dioxide content in the near-surface layer from long-term trends. These processes include vertical mixing of air, CO2 absorption on the Earth’s surface, and destruction of methane in the troposphere in reactions with hydroxyl.


2008 ◽  
Vol 26 (5) ◽  
pp. 1199-1206 ◽  
Author(s):  
A. D. Danilov

Abstract. The data from the vertical ionospheric sounding for 12 stations over the world were analyzed to find the relation between the values of foF2 for 02:00 LT and 14:00 LT of the same day. It is found that, in general, there exists a negative correlation between foF2(02) and foF2(14). The value of the correlation coefficient R(foF2) can be in some cases high enough and reach minus 0.7–0.8. The value of R(foF2) demonstrates a well pronounced seasonal variations, the highest negative values being observed at the equinox periods of the year. It is also found that R(foF2) depends on geomagnetic activity: the magnitude of R(foF2) is the highest for the choice of only magnetically quiet days (Ap<6), decreasing with the increase of the limiting value of Ap. For a fixed limitation on Ap, the value of R(foF2) depends also on solar activity. Apparently, the effects found are related to thermospheric winds. Analysis of long series of the vertical sounding data shows that there is a long-term trend in R(foF2) with a statistically significant increase in the R(foF2) magnitude after about 1980. Similar analysis is performed for the foF2(02)/foF2(14) ratio itself. The ratio also demonstrates a systematic trend after 1980. Both trends are interpreted in terms of long-term changes in thermospheric circulation.


2002 ◽  
Vol 29 (2) ◽  
pp. 134-153 ◽  
Author(s):  
Björn Malmqvist ◽  
Simon Rundle

Running waters are perhaps the most impacted ecosystem on the planet as they have been the focus for human settlement and are heavily exploited for water supplies, irrigation, electricity generation, and waste disposal. Lotic systems also have an intimate contact with their catchments and so land-use alterations affect them directly. Here long-term trends in the factors that currently impact running waters are reviewed with the aim of predicting what the main threats to rivers will be in the year 2025. The main ultimate factors forcing change in running waters (ecosystem destruction, physical habitat and water chemistry alteration, and the direct addition or removal of species) stem from proximate influences from urbanization, industry, land-use change and water-course alterations. Any one river is likely to be subjected to several types of impact, and the management of impacts on lotic systems is complicated by numerous links between different forms of anthropogenic effect. Long-term trends for different impacts vary. Concentrations of chemical pollutants such as toxins and nutrients have increased in rivers in developed countries over the past century, with recent reductions for some pollutants (e.g. metals, organic toxicants, acidification), and continued increases in others (e.g. nutrients); there are no long-term chemical data for developing countries. Dam construction increased rapidly during the twentieth century, peaking in the 1970s, and the number of reservoirs has stabilized since this time, whereas the transfer of exotic species between lotic systems continues to increase. Hence, there have been some success stories in the attempts to reduce the impacts from anthropogenic impacts in developed nations. Improvements in the pH status of running waters should continue with lower sulphurous emissions, although emissions of nitrous oxides are set to continue under current legislation and will continue to contribute to acidification and nutrient loadings. Climate change also will impact running waters through alterations in hydrology and thermal regimes, although precise predictions are problematic; effects are likely to vary between regions and to operate alongside rather than override those from other impacts. Effects from climate change may be more extreme over longer time scales (>50 years). The overriding pressure on running water ecosystems up to 2025 will stem from the predicted increase in the human population, with concomitant increases in urban development, industry, agricultural activities and water abstraction, diversion and damming. Future degradation could be substantial and rapid (c. 10 years) and will be concentrated in those areas of the world where resources for conservation are most limited and knowledge of lotic ecosystems most incomplete; damage will centre on lowland rivers, which are also relatively poorly studied. Changes in management practices and public awareness do appear to be benefiting running water ecosystems in developed countries, and could underpin conservation strategies in developing countries if they were implemented in a relevant way.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jennifer A. Burney ◽  
Laurel L. DeHaan ◽  
Chisato Shimizu ◽  
Emelia V. Bainto ◽  
Jane W. Newburger ◽  
...  

AbstractIn a single-site study (San Diego, CA, USA), we previously showed that Kawasaki Disease (KD) cases cluster temporally in bursts of approximately 7 days. These clusters occurred more often than would be expected at random even after accounting for long-term trends and seasonality. This finding raised the question of whether other locations around the world experience similar temporal clusters of KD that might offer clues to disease etiology. Here we combine data from San Diego and nine additional sites around the world with hospitals that care for large numbers of KD patients, as well as two multi-hospital catchment regions. We found that across these sites, KD cases clustered at short time scales and there were anomalously long quiet periods with no cases. Both of these phenomena occurred more often than would be expected given local trends and seasonality. Additionally, we found unusually frequent temporal overlaps of KD clusters and quiet periods between pairs of sites. These findings suggest that regional and planetary range environmental influences create periods of higher or lower exposure to KD triggers that may offer clues to the etiology of KD.


Author(s):  
Zhihua Zheng ◽  
Ramsey R. Harcourt ◽  
Eric A. D’Asaro

AbstractMonin-Obukhov Similarity Theory (MOST) provides important scaling laws for flow properties in the surface layer of the atmosphere and has contributed to most of our understanding of the near-surface turbulence. The prediction of near-surface vertical mixing in most operational ocean models is largely built upon this theory. However, the validity of MOST in the upper ocean is questionable due to the demonstrated importance of surface waves in the region. Here we examine the validity of MOST in the statically unstable oceanic surface layer, using data collected from two open ocean sites with different wave conditions. The observed vertical temperature gradients are found to be about half of those predicted by MOST. We hypothesize this is attributable to either the breaking of surface waves, or Langmuir turbulence generated by the wave-current interaction. Existing turbulence closure models for surface wave breaking and for Langmuir turbulence are simplified to test these two hypotheses. Although both models predict reduced temperature gradients, the simplified Langmuir turbulence model matches observations more closely, when appropriately tuned.


Author(s):  
Yu.F. Ivanov ◽  
A.A. Yuriev ◽  
V.E. Kormyshev ◽  
X. Chen ◽  
V.B. Kosterev ◽  
...  

The quantitative estimation of strengthening mechanisms of rails’ surface layer is carried out on the basis of regularities and formation mechanisms of structure-phase states revealed by the methods of modern physical materials science. It is performed at different depths of the rail head along the central axis and fillet of differentially quenched 100-meter rails after the extremely long-term operation (gross passed tonnage of 1411 mln tons). A long-term operation of rails is accompanied by the formation of structural constituent gradient consisting of a regular change in the relative content of lamellar pearlite, fractured pearlite, the structure of ferrite-carbide mixture, scalar, and excess dislocation density along the cross-section of the rail head. As the distance to the rail fillet surface decreases, the relative content of metal volume with lamellar pearlite decreases. However, the relative content of metal volume with the presence of the fractured pearlite structure and ferrite-carbide mixture increases. The contributions caused by the matrix lattice friction, intraphase boundaries, dislocation substructure, presence of carbide particles, internal stress fields, solid-solution strengthening, pearlite component of steel structure are estimated. It is shown that the main mechanism of strengthening in the surface layer is due to the interaction of moving dislocations with low-angle boundaries of nanometer dimensional fragments and subgrains. The main dislocation strengthening mechanism in a near-surface layer at a depth of 2-10 mm is due to the interaction of moving dislocations with immobile ones.


2008 ◽  
pp. 62-79 ◽  
Author(s):  
V. Klinov

Forecasting long-term trends in the world economy is a necessary element of elaborating a strategy of economic development. The forecast for 2025 and 2050 has been worked out using concepts of Kondratieff long waves, catching-up pathways of development as well as modern trends in demographic processes. The estimates of changes in the geographic structure of the world economy, so derived, are compared with forecasts based on extrapolation of trends in the last 30 years of the 20th century, made up by prominent think tanks. The formation of the multi-center structure of the world economy and probable emergence of Russia as one of the global powers may imply that worldwide cooperation in securing supply of natural resources and protecting the environment will become a crucial problem of international relations.


2010 ◽  
Vol 23 (5) ◽  
pp. 1209-1225 ◽  
Author(s):  
Hui Wan ◽  
Xiaolan L. Wang ◽  
Val R. Swail

Abstract Near-surface wind speeds recorded at 117 stations in Canada for the period from 1953 to 2006 were analyzed in this study. First, metadata and a logarithmic wind profile were used to adjust hourly wind speeds measured at nonstandard anemometer heights to the standard 10-m level. Monthly mean near-surface wind speed series were then derived and subjected to a statistical homogeneity test, with homogeneous monthly mean geostrophic wind (geowind) speed series being used as reference series. Homogenized monthly mean near-surface wind speed series were obtained by adjusting all significant mean shifts, using the results of the statistical test and modeling along with all available metadata, and were used to assess the long-term trends. This study shows that station relocation and anemometer height change are the main causes for discontinuities in the near-surface wind speed series, followed by instrumentation problems or changes, and observing environment changes. It also shows that the effects of artificial mean shifts on the results of trend analysis are remarkable, and that the homogenized near-surface wind speed series show good spatial consistency of trends, which are in agreement with long-term trends estimated from independent datasets, such as surface winds in the United States and cyclone activity indices and ocean wave heights in the region. These indicate success in the homogenization of the wind data. During the period analyzed, the homogenized near-surface wind speed series show significant decreases throughout western Canada and most parts of southern Canada (except the Maritimes) in all seasons, with significant increases in the central Canadian Arctic in all seasons and in the Maritimes in spring and autumn.


Sign in / Sign up

Export Citation Format

Share Document