Threats to the running water ecosystems of the world

2002 ◽  
Vol 29 (2) ◽  
pp. 134-153 ◽  
Author(s):  
Björn Malmqvist ◽  
Simon Rundle

Running waters are perhaps the most impacted ecosystem on the planet as they have been the focus for human settlement and are heavily exploited for water supplies, irrigation, electricity generation, and waste disposal. Lotic systems also have an intimate contact with their catchments and so land-use alterations affect them directly. Here long-term trends in the factors that currently impact running waters are reviewed with the aim of predicting what the main threats to rivers will be in the year 2025. The main ultimate factors forcing change in running waters (ecosystem destruction, physical habitat and water chemistry alteration, and the direct addition or removal of species) stem from proximate influences from urbanization, industry, land-use change and water-course alterations. Any one river is likely to be subjected to several types of impact, and the management of impacts on lotic systems is complicated by numerous links between different forms of anthropogenic effect. Long-term trends for different impacts vary. Concentrations of chemical pollutants such as toxins and nutrients have increased in rivers in developed countries over the past century, with recent reductions for some pollutants (e.g. metals, organic toxicants, acidification), and continued increases in others (e.g. nutrients); there are no long-term chemical data for developing countries. Dam construction increased rapidly during the twentieth century, peaking in the 1970s, and the number of reservoirs has stabilized since this time, whereas the transfer of exotic species between lotic systems continues to increase. Hence, there have been some success stories in the attempts to reduce the impacts from anthropogenic impacts in developed nations. Improvements in the pH status of running waters should continue with lower sulphurous emissions, although emissions of nitrous oxides are set to continue under current legislation and will continue to contribute to acidification and nutrient loadings. Climate change also will impact running waters through alterations in hydrology and thermal regimes, although precise predictions are problematic; effects are likely to vary between regions and to operate alongside rather than override those from other impacts. Effects from climate change may be more extreme over longer time scales (>50 years). The overriding pressure on running water ecosystems up to 2025 will stem from the predicted increase in the human population, with concomitant increases in urban development, industry, agricultural activities and water abstraction, diversion and damming. Future degradation could be substantial and rapid (c. 10 years) and will be concentrated in those areas of the world where resources for conservation are most limited and knowledge of lotic ecosystems most incomplete; damage will centre on lowland rivers, which are also relatively poorly studied. Changes in management practices and public awareness do appear to be benefiting running water ecosystems in developed countries, and could underpin conservation strategies in developing countries if they were implemented in a relevant way.

Author(s):  
Ye Yuan ◽  
Stefan Härer ◽  
Tobias Ottenheym ◽  
Gourav Misra ◽  
Alissa Lüpke ◽  
...  

AbstractPhenology serves as a major indicator of ongoing climate change. Long-term phenological observations are critically important for tracking and communicating these changes. The phenological observation network across Germany is operated by the National Meteorological Service with a major contribution from volunteering activities. However, the number of observers has strongly decreased for the last decades, possibly resulting in increasing uncertainties when extracting reliable phenological information from map interpolation. We studied uncertainties in interpolated maps from decreasing phenological records, by comparing long-term trends based on grid-based interpolated and station-wise observed time series, as well as their correlations with temperature. Interpolated maps in spring were characterized by the largest spatial variabilities across Bavaria, Germany, with respective lowest interpolated uncertainties. Long-term phenological trends for both interpolations and observations exhibited mean advances of −0.2 to −0.3 days year−1 for spring and summer, while late autumn and winter showed a delay of around 0.1 days year−1. Throughout the year, temperature sensitivities were consistently stronger for interpolated time series than observations. Such a better representation of regional phenology by interpolation was equally supported by satellite-derived phenological indices. Nevertheless, simulation of observer numbers indicated that a decline to less than 40% leads to a strong decrease in interpolation accuracy. To better understand the risk of declining phenological observations and to motivate volunteer observers, a Shiny app is proposed to visualize spatial and temporal phenological patterns across Bavaria and their links to climate change–induced temperature changes.


2013 ◽  
Vol 3 (12) ◽  
pp. 4183-4196 ◽  
Author(s):  
Maartje J. Klapwijk ◽  
György Csóka ◽  
Anikó Hirka ◽  
Christer Björkman

2021 ◽  
Author(s):  
Laurent Lambert ◽  
Mahmood Almehdhar ◽  
Mustafa Haji

<p><strong>Abstract</strong>: Changes in the global oceanic system have already negatively affected the world’s marine life and the livelihoods of many coastal communities across the world, including in the Middle East' and Eastern Africa's Least Developed Countries (LDCs). Coastal communities in Somalia and Yemen for instance, have been particularly affected by extreme environmental events (EEEs), with an increase in the frequency of tropical cyclones over the past 20 years. Using expert elicitation as a method to generate data to assess and quantify a specific issue in the absence of sufficient and/or reliable data, the authors interviewed selected specialists in or from Somalia and Yemen, from diverse fields of expertise related to climate change, extreme environmental events, disaster risk reduction, and humanitarian affairs. Ten experts followed the elicitation protocol and answered a specific series of questions in order to better quantify the expectable mid-to-long-term climatic and humanitarian levels of risks, impacts, and consequences that climate change and related issues (e.g., sea-level rise, tropical cyclones, and sea surge) may generate in coastal areas along the Gulf of Aden's coastal cities of Aden and Bossaso, in Yemen and Somalia, respectively.</p><p>The findings indicate that there is cause for significant concern as climate change is assessed by all interviewees - irrespective of their background -, as very likely to hold a negative to a devastating impact on (fresh) water security, food security, public health, social conflicts, population displacement, and eventually political stability; and to strongly worsen the humanitarian situations in Somalia and Yemen, both in the medium-term (i.e., 2020-2050) and the long-term (i.e., 2020-2100). The authors call on the scientific community to further research the issue of climate change in the understudied coastal areas of the Gulf of Aden, and on the international community to pro-actively and urgently help the local populations and relevant authorities to rapidly and strongly build up their adaptation capacities, especially in the niche of coastal EEEs.</p>


2017 ◽  
Vol 56 (10) ◽  
pp. 2869-2881
Author(s):  
Janel Hanrahan ◽  
Alexandria Maynard ◽  
Sarah Y. Murphy ◽  
Colton Zercher ◽  
Allison Fitzpatrick

AbstractAs demand for renewable energy grows, so does the need for an improved understanding of renewable energy sources. Paradoxically, the climate change mitigation strategy of fossil fuel divestment is in itself subject to shifts in weather patterns resulting from climate change. This is particularly true with solar power, which depends on local cloud cover. However, because observed shortwave radiation data usually span a decade or less, persistent long-term trends may not be identified. A simple linear regression model is created here using diurnal temperature range (DTR) during 2002–15 as a predictor variable to estimate long-term shortwave radiation (SR) values in the northeastern United States. Using an extended DTR dataset, SR values are computed for 1956–2015. Statistically significant decreases in shortwave radiation are identified that are dominated by changes during the summer months. Because this coincides with the season of greatest insolation and the highest potential for energy production, financial implications may be large for the solar energy industry if such trends persist into the future.


2018 ◽  
Vol 192 ◽  
pp. 02017 ◽  
Author(s):  
Jatuwat Wattanasetpong ◽  
Uma Seeboonruang ◽  
Uba Sirikaew ◽  
Walter Chen

Soil loss due to surface erosion has been a global problem not just for developing countries but also for developed countries. One of the factors that have greatest impact on soil erosion is land cover. The purpose of this study is to estimate the long-term average annual soil erosion in the Lam Phra Phloeng watershed, Nakhon Ratchasima, Thailand with different source of land cover by using the Universal Soil Loss Equation (USLE) and GIS (30 m grid cells) to calculate the six erosion factors (R, K, L, S, C, and P) of USLE. Land use data are from Land Development Department (LDD) and ESA Climate Change Initiative (ESA/CCI) in 2015. The result of this study show that mean soil erosion by using land cover from ESA/CCI is less than LDD (29.16 and 64.29 ton/ha/year respectively) because soil erosion mostly occurred in the agricultural field and LDD is a local department that survey land use in Thailand thus land cover data from this department have more details than ESA/CCI.


2011 ◽  
Vol 8 (4) ◽  
pp. 7621-7655 ◽  
Author(s):  
S. Stoll ◽  
H. J. Hendricks Franssen ◽  
R. Barthel ◽  
W. Kinzelbach

Abstract. Future risks for groundwater resources, due to global change are usually analyzed by driving hydrological models with the outputs of climate models. However, this model chain is subject to considerable uncertainties. Given the high uncertainties it is essential to identify the processes governing the groundwater dynamics, as these processes are likely to affect groundwater resources in the future, too. Information about the dominant mechanisms can be achieved by the analysis of long-term data, which are assumed to provide insight in the reaction of groundwater resources to changing conditions (weather, land use, water demand). Referring to this, a dataset of 30 long-term time series of precipitation dominated groundwater systems in northern Switzerland and southern Germany is collected. In order to receive additional information the analysis of the data is carried out together with hydrological model simulations. High spatio-temporal correlations, even over large distances could be detected and are assumed to be related to large-scale atmospheric circulation patterns. As a result it is suggested to prefer innovative weather-type-based downscaling methods to other stochastic downscaling approaches. In addition, with the help of a qualitative procedure to distinguish between meteorological and anthropogenic causes it was possible to identify processes which dominated the groundwater dynamics in the past. It could be shown that besides the meteorological conditions, land use changes, pumping activity and feedback mechanisms governed the groundwater dynamics. Based on these findings, recommendations to improve climate change impact studies are suggested.


Hydrobiologia ◽  
2018 ◽  
Vol 822 (1) ◽  
pp. 85-109 ◽  
Author(s):  
John R. Beaver ◽  
Janet E. Kirsch ◽  
Claudia E. Tausz ◽  
Erin E. Samples ◽  
Thomas R. Renicker ◽  
...  

2020 ◽  
Vol 16 (1) ◽  
pp. 154-161
Author(s):  
Михаил Елизаров

Over the decades, attempts were made to elaborate a legally binding single document on ocean resource management that would be acceptable to all countries. The culmination of this process was the adoption of the 1982 UN Convention on the law of sea. Since its entry into force, the Convention has become an important legal basis for ensuring the rational use of the world's ocean resources and their long-term conservation on behalf of future generations. At the same time, there remains the very acute challenge associated with finding a balance between reaching a global consensus on issues that are common to all and identifying topics that can be addressed and resolved by leaders at the global level. As humankind continues to postpone the adoption of urgent measures to prevent the effects of climate change, the environment deteriorates, while measures to mitigate these effects get more expensive and complex.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1498 ◽  
Author(s):  
Solomon Mulugeta ◽  
Clifford Fedler ◽  
Mekonen Ayana

With climate change prevailing around the world, understanding the changes in long-term annual and seasonal rainfall at local scales is very important in planning for required adaptation measures. This is especially true for areas such as the Awash River basin where there is very high dependence on rain- fed agriculture characterized by frequent droughts and subsequent famines. The aim of the study is to analyze long-term trends of annual and seasonal rainfall in the Awash River Basin, Ethiopia. Monthly rainfall data extracted from Climatic Research Unit (CRU 4.01) dataset for 54 grid points representing the entire basin were aggregated to find the respective areal annual and seasonal rainfall time series for the entire basin and its seven sub-basins. The Mann-Kendall (MK) test and Sen Slope estimator were applied to the time series for detecting the trends and for estimating the rate of change, respectively. The Statistical software package R version 3.5.2 was used for data extraction, data analyses, and plotting. Geographic information system (GIS) package was also used for grid making, site selection, and mapping. The results showed that no significant trend (at α = 0.05) was identified in annual rainfall in all sub-basins and over the entire basin in the period (1902 to 2016). However, the results for seasonal rainfall are mixed across the study areas. The summer rainfall (June through September) showed significant decreasing trend (at α ≤ 0.1) over five of the seven sub-basins at a rate varying from 4 to 7.4 mm per decade but it showed no trend over the two sub-basins. The autumn rainfall (October through January) showed no significant trends over four of the seven sub-basins but showed increasing trends over three sub-basins at a rate varying from 2 to 5 mm per decade. The winter rainfall (February through May) showed no significant trends over four sub-basins but showed significant increasing trends (at α ≤ 0.1) over three sub-basins at a rate varying from 0.6 to 2.7 mm per decade. At the basin level, the summer rainfall showed a significant decreasing trend (at α = 0.05) while the autumn and winter rainfall showed no significant trends. In addition, shift in some amount of summer rainfall to winter and autumn season was noticed. It is evident that climate change has shown pronounced effects on the trends and patterns of seasonal rainfall. Thus, the study contribute to better understanding of climate change in the basin and the information from the study can be used in planning for adaptation measures against a changing climate.


2016 ◽  
Vol 9 (9) ◽  
pp. 3461-3482 ◽  
Author(s):  
Brian C. O'Neill ◽  
Claudia Tebaldi ◽  
Detlef P. van Vuuren ◽  
Veronika Eyring ◽  
Pierre Friedlingstein ◽  
...  

Abstract. Projections of future climate change play a fundamental role in improving understanding of the climate system as well as characterizing societal risks and response options. The Scenario Model Intercomparison Project (ScenarioMIP) is the primary activity within Phase 6 of the Coupled Model Intercomparison Project (CMIP6) that will provide multi-model climate projections based on alternative scenarios of future emissions and land use changes produced with integrated assessment models. In this paper, we describe ScenarioMIP's objectives, experimental design, and its relation to other activities within CMIP6. The ScenarioMIP design is one component of a larger scenario process that aims to facilitate a wide range of integrated studies across the climate science, integrated assessment modeling, and impacts, adaptation, and vulnerability communities, and will form an important part of the evidence base in the forthcoming Intergovernmental Panel on Climate Change (IPCC) assessments. At the same time, it will provide the basis for investigating a number of targeted science and policy questions that are especially relevant to scenario-based analysis, including the role of specific forcings such as land use and aerosols, the effect of a peak and decline in forcing, the consequences of scenarios that limit warming to below 2 °C, the relative contributions to uncertainty from scenarios, climate models, and internal variability, and long-term climate system outcomes beyond the 21st century. To serve this wide range of scientific communities and address these questions, a design has been identified consisting of eight alternative 21st century scenarios plus one large initial condition ensemble and a set of long-term extensions, divided into two tiers defined by relative priority. Some of these scenarios will also provide a basis for variants planned to be run in other CMIP6-Endorsed MIPs to investigate questions related to specific forcings. Harmonized, spatially explicit emissions and land use scenarios generated with integrated assessment models will be provided to participating climate modeling groups by late 2016, with the climate model simulations run within the 2017–2018 time frame, and output from the climate model projections made available and analyses performed over the 2018–2020 period.


Sign in / Sign up

Export Citation Format

Share Document