scholarly journals Effects of exogenous Fibroblast Growth Factor-21 on characteristic parameters related to energy metabolism in dairy cows

2019 ◽  
Vol 75 (11) ◽  
pp. 6343-2019
Author(s):  
YUANYUAN CHEN ◽  
QIAN WU ◽  
YING GAO ◽  
HONGTAO ZHANG ◽  
ZHIHAO DONG ◽  
...  

Negative energy balance (NEB) is a common pathological foundation of fatty liver and ketosis. Liver and fat tissue are the major organs of lipid metabolism, which is also a key metabolic pathway that regulates NEB development during the perinatal period. Fibroblast growth factor-21 (FGF-21) is a protein hormone that plays an important role in adipose lipid metabolism and liver gluconeogenesis. Our aim was to investigate the effects of exogenous FGF-21 on characteristic parameters related to energy balance in dairy cows. Ten non-pregnant, non-lactating Holstein-Friesian dairy cows were randomly allocated into two groups. The interventions were exogenous FGF-21 injection group received 1 ug/kg BW (body weight) of recombinant bovine FGF-21 by intravenous injection, and control group received physiological saline injections by intravenous injection. In comparison to saline injections, intravenous injections of FGF-21 either increased or tended to increase concentrations of FGF-21 (p < 0.05), BHBA (p < 0.05), adiponectin, leptin and HDL-C. FGF-21 injections decreased or tended to decrease concentrations of insulin, glucose, glucagon (p < 0.05), ALT/GPT (p < 0.05), AST/GOT (p < 0.05), urate, creatinine (p < 0.05), BUN, triglyceride (p < 0.05), T-CHO and LDL-C (p < 0.05). The results indicate that FGF-21 has only negative effects on the metabolites and metabolic hormones related to NEB in serum of dairy cows, but it has more beneficial effects on prominent adipokines, liver function index, renal function index, lipoprotein profiles related to the pathological changes that occurred in NEB.

2009 ◽  
Vol 5 (4) ◽  
pp. 216-220 ◽  
Author(s):  
Daniel Cuevas-Ramos ◽  
Paloma Almeda-Valdes ◽  
Carlos Aguilar-Salinas ◽  
Gabriel Cuevas-Ramos ◽  
Andres Cuevas-Sosa ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Klaus Eder ◽  
Denise K. Gessner ◽  
Robert Ringseis

AbstractFibroblast growth factor 21 (FGF21) has been identified as an important regulator of carbohydrate and lipid metabolism, which plays an important role for metabolic regulation, particularly under conditions of energy deprivation or stress conditions. Dairy cows are subjected to a negative energy balance and various kinds of stress particularly during the periparturient phase and during early lactation. It has been shown that the plasma concentration of FGF21 in dairy cows is dramatically increased at parturition and remains high during the first weeks of lactation. This finding suggests that FGF21 might exert similar functions in dairy cows than in other species, such as mice or humans. However, the role of FGF21 in dairy cows has been less investigated so far. Following a brief summary of the previous findings about the function of FGF21 in humans and mice, the present review aims to present the current state of knowledge about the role of FGF21 in dairy cows. The first part of the review deals with the tissue localization of FGF21 and with conditions leading to an upregulation of FGF21 expression in the liver of dairy cows. In the second part, the influence of nutrition on FGF21 expression and the role of FGF21 for metabolic diseases in dairy cows is addressed. In the third part, findings of exogenous FGF21 application on metabolism in dairy cows are reported. Finally, the potential relevance of FGF21 in dairy cows is discussed. It is concluded that FGF21 might be of great importance for metabolic adaptation to negative energy balance and stress conditions in dairy cows. However, further studies are needed for a better understanding of the functions of FGF21 in dairy cows.


2018 ◽  
Vol 239 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Eva B Nygaard ◽  
Cathrine Ørskov ◽  
Thomas Almdal ◽  
Henrik Vestergaard ◽  
Birgitte Andersen

Fibroblast growth factor 21 (FGF21) is a metabolic regulator of energy and lipid metabolism. FGF21 is highly expressed in liver while FGF21 receptors (beta-klotho (KLB) and FGFR1c) are highly expressed in white adipose tissues (WATs). Plasma FGF21 has been shown to be increased after 7–10 days of fasting but oppositely plasma FGF21 is also increased in obesity. The aim of this study was to measure the effect of 60 h of fasting on plasma FGF21 levels in obese and lean subjects and to determine the gene expression of KLB and FGFR1c in the subcutaneous WAT before, during and after 60 h of fasting. Eight obese (BMI >30 kg/m2) and seven lean subjects (BMI <25 kg/m2) were fasted for 60 h and blood samples were taken at time 0 and after 12, 36 and 60 h of fasting. A biopsy from the subcutaneous WAT was taken at time 0, 12 and 60 h of fasting. FGF21 was measured in plasma by an ELISA and mRNA expression of KLB and FGFR1c was measured in WAT by quantitative PCR (qPCR). The fast significantly decreased plasma FGF21 in obese subjects while no change in plasma FGF21 was observed in lean subjects. Interestingly, KLB was significantly decreased in WAT in response to fasting in both lean and obese subjects indicating a potential important adaptive regulation of KLB in response to fasting.


2017 ◽  
Vol 313 (3) ◽  
pp. E292-E302 ◽  
Author(s):  
Ting Xie ◽  
Po Sing Leung

Fibroblast growth factor 21 (FGF21) is a potent endocrine regulator with physiological effects on glucose and lipid metabolism and thus garners much attention for its translational potential for the management of obesity and related metabolic syndromes. FGF21 is mainly expressed in several metabolically active tissue organs, such as the liver, adipose tissue, skeletal muscle, and pancreas, with profound effects and therapeutic relevance. Emerging experimental and clinical data point to the demonstrated metabolic benefits of FGF21, which include, but are not limited to, weight loss, glucose and lipid metabolism, and insulin sensitivity. In addition, FGF21 also acts directly through its coreceptor β-klotho in the brain to alter light-dark cycle activity. In this review, we critically appraise current advances in understanding the physiological actions of FGF21 and its role as a biomarker of various metabolic diseases, especially type 2 diabetes mellitus. We also discuss the potentially exciting role of FGF21 in improving our health and prolonging our life span. This information will provide a fuller understanding for further research into FGF21, as well as providing a scientific basis for potentially establishing health care guidelines for this promising molecule.


2007 ◽  
Vol 5 (6) ◽  
pp. 426-437 ◽  
Author(s):  
Michael K. Badman ◽  
Pavlos Pissios ◽  
Adam R. Kennedy ◽  
George Koukos ◽  
Jeffrey S. Flier ◽  
...  

2015 ◽  
Vol 114 (9) ◽  
pp. 1535-1536 ◽  
Author(s):  
Yori Ozaki ◽  
Kenji Saito ◽  
Kyoko Nakazawa ◽  
Morichika Konishi ◽  
Nobuyuki Itoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document