scholarly journals Data Mining applied on Web Robots Detection: A Systematic Mapping

2021 ◽  
Author(s):  
Ramon Abilio ◽  
Cristiano Garcia ◽  
Victor Fernandes

Browsing on Internet is part of the world population’s daily routine. The number of web pages is increasing and so is the amount of published content (news, tutorials, images, videos) provided by them. Search engines use web robots to index web contents and to offer better results to their users. However, web robots have also been used for exploiting vulnerabilities in web pages. Thus, monitoring and detecting web robots’ accesses is important in order to keep the web server as safe as possible. Data Mining methods have been applied to web server logs (used as data source) in order to detect web robots. Then, the main objective of this work was to observe evidences of definition or use of web robots detection by analyzing web server-side logs using Data Mining methods. Thus, we conducted a systematic Literature mapping, analyzing papers published between 2013 and 2020. In the systematic mapping, we analyzed 34 studies and they allowed us to better understand the area of web robots detection, mapping what is being done, the data used to perform web robots detection, the tools, and algorithms used in the Literature. From those studies, we extracted 33 machine learning algorithms, 64 features, and 13 tools. This study is helpful for researchers to find machine learning algorithms, features, and tools to detect web robots by analyzing web server logs.

Student Performance Management is one of the key pillars of the higher education institutions since it directly impacts the student’s career prospects and college rankings. This paper follows the path of learning analytics and educational data mining by applying machine learning techniques in student data for identifying students who are at the more likely to fail in the university examinations and thus providing needed interventions for improved student performance. The Paper uses data mining approach with 10 fold cross validation to classify students based on predictors which are demographic and social characteristics of the students. This paper compares five popular machine learning algorithms Rep Tree, Jrip, Random Forest, Random Tree, Naive Bayes algorithms based on overall classifier accuracy as well as other class specific indicators i.e. precision, recall, f-measure. Results proved that Rep tree algorithm outperformed other machine learning algorithms in classifying students who are at more likely to fail in the examinations.


2012 ◽  
Vol 3 (1) ◽  
pp. 30
Author(s):  
Mona M. Abu Al-Khair ◽  
M. Koutb ◽  
H. Kelash

Each year the number of consumers and the variety of their interests increase. As a result, providers are seeking ways to infer the customer's interests and to adapt their websites to make the content of interest more easily accessible. Assume that past navigation behavior as an indicator of the user's interests. Then, the records of this behavior, kept in the web-server logs, can be mined to extract the user's interests. On this principal, recommendations can be generated, to help old and new website's visitors to find the information about their interest faster.


Author(s):  
Divya Chaudhary ◽  
Er. Richa Vasuja

In today's scenario all of data is being generated by everyone of us . so it becomes vital for us to handle this data. To do so new technologies are being developed such as machine learning, data mining etc. This paper gives the study related to machine learning(ML).Precise approximations are repetitively being produced by Machine Learning algorithms. Machine learning system effectively “learns” how to guess from training set of completed jobs. The main purpose of the review is to give a jagged estimate or overview about the mostly used algorithms in machine learning.


Author(s):  
Baban. U. Rindhe ◽  
Nikita Ahire ◽  
Rupali Patil ◽  
Shweta Gagare ◽  
Manisha Darade

Heart-related diseases or Cardiovascular Diseases (CVDs) are the main reason for a huge number of death in the world over the last few decades and has emerged as the most life-threatening disease, not only in India but in the whole world. So, there is a need fora reliable, accurate, and feasible system to diagnose such diseases in time for proper treatment. Machine Learning algorithms and techniques have been applied to various medical datasets to automate the analysis of large and complex data. Many researchers, in recent times, have been using several machine learning techniques to help the health care industry and the professionals in the diagnosis of heart-related diseases. Heart is the next major organ comparing to the brain which has more priority in the Human body. It pumps the blood and supplies it to all organs of the whole body. Prediction of occurrences of heart diseases in the medical field is significant work. Data analytics is useful for prediction from more information and it helps the medical center to predict various diseases. A huge amount of patient-related data is maintained on monthly basis. The stored data can be useful for the source of predicting the occurrence of future diseases. Some of the data mining and machine learning techniques are used to predict heart diseases, such as Artificial Neural Network (ANN), Random Forest,and Support Vector Machine (SVM).Prediction and diagnosingof heart disease become a challenging factor faced by doctors and hospitals both in India and abroad. To reduce the large scale of deaths from heart diseases, a quick and efficient detection technique is to be discovered. Data mining techniques and machine learning algorithms play a very important role in this area. The researchers accelerating their research works to develop software with thehelp of machine learning algorithms which can help doctors to decide both prediction and diagnosing of heart disease. The main objective of this research project is to predict the heart disease of a patient using machine learning algorithms.


Author(s):  
Minal Shahakar

It might have happened so many times that you or someone yours need doctors help immediately, but they are not available due to some reason. The Heart Disease Prediction application is an end user support to the online. Here, we propose a web application that allows users to get instant guidance on their heart disease through an intelligent system online. The application is fed with various details and the heart disease associated with those details. The applications allows user to share their heart related issues. It then processes user specific details to check for various illnesses that could be associated with it. Here we use some intelligent data mining techniques to the most accurate that could be associated with patient‟s details. Based on result, system automatically shows the result specific doctors for further treatment and the system allows user to view doctor‟s details.


Author(s):  
Yingjun Shen ◽  
Zhe Song ◽  
Andrew Kusiak

Abstract Wind farm needs prediction models for predictive maintenance. There is a need to predict values of non-observable parameters beyond ranges reflected in available data. A prediction model developed for one machine many not perform well in another similar machine. This is usually due to lack of generalizability of data-driven models. To increase generalizability of predictive models, this research integrates the data mining with first-principle knowledge. Physics-based principles are combined with machine learning algorithms through feature engineering, strong rules and divide-and-conquer. The proposed synergy concept is illustrated with the wind turbine blade icing prediction and achieves significant prediction accuracy across different turbines. The proposed process is widely accepted by wind energy predictive maintenance practitioners because of its simplicity and efficiency. Furthermore, the testing scores of KNN, CART and DNN algorithm are increased by 44.78%, 32.72% and 9.13% with our proposed process. We demonstrated the importance of embedding physical principles within the machine learning process, and also highlight an important point that the need for more complex machine learning algorithms in industrial big data mining is often much less than it is in other applications, making it essential to incorporate physics and follow “Less is More” philosophy.


Sign in / Sign up

Export Citation Format

Share Document