scholarly journals Dual Band-Notched UWB Antenna based on Electromagnetic Band Gap Structures

Author(s):  
Son Trinh-Van ◽  
Chien Dao-Ngoc

A printed ultra-wideband (UWB) antenna with dual band-notched characteristics based on electromagnetic band-gap (EBG) structure is presented. To produce dual-band rejection, the microstrip feed line is placed between two pairs of EBG cells which are designed to act as stop-band filters. The final design of the antenna satisfies the voltage standing wave ratio (VSWR) requirement of less than 2.0 in a bandwidth spreading from 2.275 GHz to 10.835 GHz, which entirely covers UWB frequency band allocated from 3.1 to 10.6 GHz. The antenna also shows dual band-notched performance at the frequency bands of 3.375 − 3.875 GHz for WiMAX and 5.325 − 6.150 GHz for WLAN, while possessing omni-directional characteristic in the whole operating frequency band. The results show good agreement between simulation and measurement.

2012 ◽  
Vol 195-196 ◽  
pp. 13-16
Author(s):  
Wen Bo Zeng ◽  
Jia Zhao ◽  
Bao Zhong Ke ◽  
Qi Qi Wu

An ultra-wideband (UWB) printed antenna with dual band-notched characteristic is presented in this paper. The proposed antenna is composed of a semi-circular patch fed by a tapered coplanar waveguide (CPW) and an unclosed ground plane, which are printed onto the same side of a FR4 printed circuit board (PCB) with an overall size of 30 mm × 30 mm × 1.5 mm. By embedding a simple arc-shaped slot in the patch and adding a T-shaped strip on the top of the patch, two notched frequency bands for rejection of WiMAX and WLAN system can be realized. The characteristics of the proposed antenna are investigated by using the software HFSS and validated experimentally, both simulated and measured results show that the proposed antenna prototype achieves good impedance matching over an frequency band from 2.1011.40 GHz for VSWR2 with two notched bands over the frequency range of 5-5.95 GHz and 3.1-3.9 GHz. Furthermore, a relatively stable gain and suitable radiation patterns are also achieved in both lower and upper UWB frequency band.


2019 ◽  
Vol 11 (10) ◽  
pp. 1035-1043 ◽  
Author(s):  
Mahmoud A. Abdalla ◽  
Abdullah A. Al-Mohamadi ◽  
Ibrahim S. Mohamed

AbstractA high selective dual band and miniaturized electromagnetic band gap (EBG) unit cell is presented in this paper. The analysis and characterization of the new cell are explained. The modified compact EBG unit cell is based on cutting two inverted U-shaped slots inside the typical mushroom-like EBG. The modified EBG has a 70% size reduction. The dual-band functionality of the structure is confirmed by applying it in a dual-notch ultra-wideband antenna (3.1–10.6 GHz), and the notch frequencies are 5.2 and 5.8 GHz. The dual-band functionality has advantages of a highly selective bandpass between them. The antenna can suppress interference frequencies in less than 100 MHz bandwidth without affecting the antenna performance in the whole bandwidth. Presented results are addressed in terms of circuit modeling, 3D full-wave simulations, and measurements.


2018 ◽  
Vol 7 (1) ◽  
pp. 19-24 ◽  
Author(s):  
A. S. Elkorany ◽  
G. T. Ahmed ◽  
D. A. Saleeb

In this paper, CPW-Fed ultra wideband (UWB) planar monopole antenna (PMA) loaded by double elliptical split ring resonators (ESRRs) for double band-notch characteristics is introduced and examined. Two different ESRRs with different dimensions are printed in the antenna backside to notch two different frequencies. The ESRRs are also rotated and the corresponding return loss effect is examined.  Different notch frequencies can be obtained by varying the ESRRs, dimensions. Two single SRRs are used to notch two frequencies instead of using dual SRR pairs. Two notch frequencies at 5.2 GHz and 6.9 GHz has been obtained to notch WLAN and C-band wireless applications, respectively. A directive radiation pattern in E-plane and omnidirectional radiation patterns in the H-plane could be observed. Also the gain is suppressed in the notch frequencies. The group delay is nearly stable in the UWB frequency range, except at the notch frequencies, which is distorted sharply. So, the proposed antenna is a good candidate for the modern UWB systems. Finite element method FEM and finite integration technique FIT are used to simulate the proposed structures through the usage of Ansys HFSS and CST MWS. Very good agreement between both results has been obtained.


2014 ◽  
Author(s):  
Amir I. Zaghloul ◽  
Youn M. Lee ◽  
Gregory A. Mitchell ◽  
Theodore K. Anthony

Micromachines ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 269
Author(s):  
Ayman A. Althuwayb ◽  
Mohammad Alibakhshikenari ◽  
Bal S. Virdee ◽  
Pancham Shukla ◽  
Ernesto Limiti

This research article describes a technique for realizing wideband dual notched functionality in an ultra-wideband (UWB) antenna array based on metamaterial and electromagnetic bandgap (EBG) techniques. For comparison purposes, a reference antenna array was initially designed comprising hexagonal patches that are interconnected to each other. The array was fabricated on standard FR-4 substrate with thickness of 0.8 mm. The reference antenna exhibited an average gain of 1.5 dBi across 5.25–10.1 GHz. To improve the array’s impedance bandwidth for application in UWB systems metamaterial (MTM) characteristics were applied it. This involved embedding hexagonal slots in patch and shorting the patch to the ground-plane with metallic via. This essentially transformed the antenna to a composite right/left-handed structure that behaved like series left-handed capacitance and shunt left-handed inductance. The proposed MTM antenna array now operated over a much wider frequency range (2–12 GHz) with average gain of 5 dBi. Notched band functionality was incorporated in the proposed array to eliminate unwanted interference signals from other wireless communications systems that coexist inside the UWB spectrum. This was achieved by introducing electromagnetic bandgap in the array by etching circular slots on the ground-plane that are aligned underneath each patch and interconnecting microstrip-line in the array. The proposed techniques had no effect on the dimensions of the antenna array (20 mm × 20 mm × 0.87 mm). The results presented confirm dual-band rejection at the wireless local area network (WLAN) band (5.15–5.825 GHz) and X-band satellite downlink communication band (7.10–7.76 GHz). Compared to other dual notched band designs previously published the footprint of the proposed technique is smaller and its rejection notches completely cover the bandwidth of interfering signals.


2020 ◽  
Vol 55 (4) ◽  
Author(s):  
Amer Abbood Al-Behadili ◽  
Adham R. Azeez ◽  
Sadiq Ahmed ◽  
Zaid A. Abdul Hassain

This paper presents an ultra-wideband tapered slot patch antenna with bi-directional radiation, reconfigurable for dual band-notched capability and fed by coplanar waveguide. The proposed antenna showed excellent ultra-wideband characteristics with bandwidth of (1.9–12 GHz). In order to reduce the interference of the narrow band communications represented by Worldwide Interoperability for Microwave Access radiation in the range (3.4–3.9) GHz and standard IEEE 802.11a. application (from 5.1 GHz to 6.1 GHz), the antenna was accompanied with adjustable dual-stop band capability in these bands. The dual-band notches are achieved with aid of inserting a parasitic single split ring resonator and etching a single circular complementary circle split ring resonator. The proposed antenna used epoxy (FR4) substrate material with ????r= 4.4 and dimensions of .


Sign in / Sign up

Export Citation Format

Share Document