scholarly journals FATTY ACIDS ANALYSIS AND CHEMOTAXONOMIC CONSIDERATIONS OF MALVOIDEAE (MALVACEAE) SPECIES

Química Nova ◽  
2020 ◽  
Author(s):  
Diégina Fernandes ◽  
Otemberg Chaves ◽  
Yanna Teles ◽  
Maria Agra ◽  
Maria Vieira ◽  
...  

Previous researches showed that fatty acids analysis might be a useful tool to support the taxonomic investigation. In this approach the fatty acids content of ten Malvoideae species was analyzed and its chemotaxonomic significance has been investigated. The aerial parts of the species were collected in the Northeast of Brazil and their fatty acid methyl esters were analyzed by gas chromatography with flame ionization detector. The chemometric analysis consisted of principal component analysis (PCA) and hierarchical clustering analysis (HCA) with the euclidean distance between the samples given by the Ward.D2 algorithm. This is the first report of fatty acids from Wissadula peripocifolia, Herissantia crispa, Bakeridesia pickelii, Sidastrum micranthum, Pavonia cancellata and Pavonia malacophylla. The results showed the predominance of palmitic (C16:0), oleic (C18:1) and linoleic (C18:2) acids in the studied species. By the PCA and HCA analysis, the fatty acid composition was able to distinguish the species Herissantia crispa and Pavonia malacophylla. Our findings showed a chemotaxonomic proximity among species from different genera reflecting the taxonomic and phylogenetic closeness previously demonstrated by molecular investigations on Malvoidae species. Furthermore, our results demonstrated that the fatty acid analysis may be an interesting tool to support the taxonomic investigations on Malvoideae species.

Plant Disease ◽  
2000 ◽  
Vol 84 (7) ◽  
pp. 785-788 ◽  
Author(s):  
R. E. Baird ◽  
R. D. Gitaitis ◽  
D. E. Carling ◽  
S. M. Baird ◽  
P. J. Alt ◽  
...  

Fatty acid methyl esters (FAMEs) of isolates of Rhizoctonia solani AG-4 and AG-7 were characterized by gas chromatography and analyzed with Microbial Identification System software. Palmitic, stearic, and oleic acids were common in all isolates from both anastomosis groups (AGs) and accounted for 95% of the C14 to C18 fatty acids present. Oleic acid, most common in both R. solani AG-4 and AG-7 isolates, accounted for the greatest percentages of total FAMEs. The presence, quantities, or absence of individual fatty acids could not be used for distinguishing AG-4 and AG-7 isolates. Anteisopentadecanoic and 9-heptadecanoic acids, however, were specific to all three AG-7 isolates from Japan but absent in other AG-7 isolates and all AG-4 isolates. Pentadecanoic acid occurred in only two of the R. solani AG-4 isolates, but was not found in any of the AG-7 isolates. The AG-4 isolates could be distinguished from AG-7 isolates when quantities of FAMEs and key FAME ratios were analyzed with cluster analysis and principle components were plotted. Isolates of AG-7 from Arkansas, Indiana, and Georgia appeared to be more closely related to each other than to AG-7 isolates from Japan and Mexico. These differences in FAMEs were sufficiently distinct that isolate geographical variability could be determined. A dendrogram analysis cluster constructed from the FAMEs data showed results similar to that of the principal component analysis. Euclidean distances of total AG-4 isolates were distinct from total AG-7 isolates. The Arkansas and Indiana AG-7 isolates had a similar Euclidean distance to each another but the percentages were different for the AG-7 isolates from Japan and Mexico. In conclusion, variability of the FAMEs identified in this study would not be suitable as the main diagnostic tool for distinguishing individual isolates of R. solaniAG-4 from AG-7.


Author(s):  
Raman Preet ◽  
Raghbir Chand Gupta

  Objective: This study aims to document the fatty acid composition of Solanum surattense Burm. f. collected from hot desert of India, Rajasthan.Methods: The fatty acid analysis was performed by gas chromatography-flame ionization detector (GC-FID). The operating conditions used to examine methyl esters of fatty acids are as follows. Fatty acids were converted into methyl esters (FAMEs) before GC analysis according to the standard methods by Ranganna (1986). Quantitative determinations of FAMEs were conducted using GC-FID and capillary column HP-88 Agilent Technologies.Results: The most abundant fatty was palmitic acid (13.2%), oleic acid (22.9%), and linoleic acid (11.9%). This plant is good source of important fatty acids including all the groups of saturated, monounsaturated, and polyunsaturated fatty acids (MUFAs and PUFAs) and can be used as a commercial source of fatty acids especially MUFAs and PUFAs.Conclusion: The plant is well studied for various pharmacological activities such as antiasthmatic, anticancer, cardiovascular, and hepatoprotective. Determination of fatty acid profiles in nutritional and clinical research with precision and fastness has become popular for human health and basic research.


2016 ◽  
Vol 36 (03) ◽  
pp. 308 ◽  
Author(s):  
Moh Taufik ◽  
Hanifah Nuryani Lioe ◽  
Nancy Dewi Yuliana

The fatty acid composition of palm oil is the major factor influencing its physical and chemical properties. The purpose of this research was to evaluate the analytical performance of major fatty acids (palmitic acid, stearic acid, oleic acid, and linoleic acid) analysis in palm oil. Triglycerides of palm oil were derivatized to fatty acid methyl esters (FAMEs) by using boron trifluoride (BF3) in methanol. FAMEs were determined by gas chromatography-flame ionization detection (GC-FID) using DB-23 capillary column as stationary phase. The studied parameters were instrument performance analysis, the efficiency of fatty acid derivatization, stability of derivatized analytes, accuracy, repeatability, intra-lab reproducibility, ruggedness, and method uncertainty. The evaluation results showed the instrument linearity at a working range of 5 to 40 mg/mL marked by coefficient of determination (R2) between 0.991-0.995. Instrument limits of detection (LOD) and instrument limits of quantification (LOQ) for 4 major fatty acids analysis were 26-35 µg/mLand 86-128 µg/mL, respectively. The increase of fatty acid concentration led to the decrease of derivatization efficiency in the fatty acids analysis. The result also showed that derivatized analytes were stable during 24 h storage at freeze temperature. The average recovery values by spiking method with the spiking concentration at 50 and 90 mg/g sample were at 75-94 % for stearic and linoleic acids analysis, however those for palmitic and oleic acids analysis were considered very low (<40 %), due to their low derivatization efficiency. Repeatability and intra-lab reproducibility of 4 major fatty acids analysis were at acceptable ranges, 0.45-1.38 % and 1.15-2.03 %, respectively. Determination by varying the volume of derivatizing agent showed the rugged method. Uncertainty of repeatability (Ur) and uncertainty of reproducibility (Ur) were ranged at 1.84-9.02 mg/g and 1.40-10.65 mg/g, respectively. This method was considerably reliable for the analysis of less abundance fatty acids in palm oil, stearic and linoleic acids.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 111-112
Author(s):  
Thu Dinh

Abstract Fatty acids determine the physical and chemical properties of fats. Animal fats, regardless of species, have more saturated and monounsaturated than polyunsaturated fatty acids. The major fatty acids in meat are palmitic (16:0), stearic (18:0), palmitoleic (16:1), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids, among which oleic acid is the most predominant. Arachidonic acid (20:4 cis 5,8,11,14) is an essential fatty acid only found in animal fats and can be used as a quality control indicator in the fatty acid analysis. Fatty acid analysis has been traditionally performed by gas chromatography (GC) of volatile fatty acid derivatives, prominently the methyl esters, and flame ionization detection (FID), in which the carbon chain of fatty acids is degraded to the formylium ion CHO+. The FID is very sensitive and is the most widely used detection method for GC, providing a linear response, i.e., peak area, over a wide range of concentrations. Researchers have been used the FID peak area to calculate the percentages of fatty acids. However, the FID is a “carbon counter” and relies on the “equal per carbon” rule; therefore, at the same molar concentration, fatty acids with a different number of carbons produce different peak areas. The recent development of mass spectrometry technology has improved the specificity of fatty acid detection. Specific target and qualifier ions provide better identification and more accurate quantification of fatty acid concentrations. Although fatty acids can be identified through comparing ion fragmentation with various databases, authentic standards are needed for quantification purposes. Using mass spectrometry, more than 50 fatty acids have been identified in meat samples. Some branched-chain fatty acids may have flavor, safety, and shelf life implications in meat products.


2016 ◽  
Vol 495 ◽  
pp. 6-8 ◽  
Author(s):  
Ken'ichi Ichihara ◽  
Chihiro Kohsaka ◽  
Naohiro Tomari ◽  
Tamami Kiyono ◽  
Jun Wada ◽  
...  

2000 ◽  
Vol 55 (7-8) ◽  
pp. 569-575 ◽  
Author(s):  
Debra L. Bemis ◽  
Vassilios Roussis ◽  
Constantinios Vagias ◽  
Robert S. Jacobs

Abstract Chloroplasts isolated from three populations of the tropical marine Chlorophyte Anadyomene stellata collected off the coast of Greece were analyzed for their fatty acid composition. Following the preparation of fatty acid methyl esters, GC-MS (El) was utilized to identify the fatty acids present in each population. Including isomers, the fatty acid profile of all three algal populations was comprised of 19 fatty acids (4 saturated, 6 monounsaturated, 9 polyunsaturated) with palmitic acid present in the highest amounts (25-27% of total fatty acids). Analysis of variance revealed significant differences amongst the three populations in the percent of total fatty acids for twelve of the fatty acids. High levels of C20 PUFAs, an atypical observation in Chlorophytes, were observed in all three populations comprising approximately 17% of total fatty acids. Furthermore a 14:2 PUFA , apparently rare in marine macrophytic Chlorophytes, was identified in significant quantities. Surprisingly, we did not find any of the conjugated tetraene containing fatty acids that we previously identified in the A. stellata populations studied from the Florida Keys.


Sign in / Sign up

Export Citation Format

Share Document