scholarly journals Coupling characteristic analysis of ship shafting design parameters and research on multidisciplinary design optimization

2020 ◽  
Vol 22 (1) ◽  
pp. 48-66
Author(s):  
Jinlin Liu ◽  
Hongsheng Yin ◽  
Fanming Zeng
2017 ◽  
Vol 2017 (4) ◽  
pp. 9-23
Author(s):  
Marco Fioriti ◽  
Luca Boggero ◽  
Sabrina Corpino

Abstract The aircraft design is a complex subject since several and completely different design disciplines are involved in the project. Many efforts are made to harmonize and optimize the design trying to combine all disciplines together at the same level of detail. Within the ongoing AGILE (Horizon 2020) research, an aircraft MDO (Multidisciplinary Design Optimization) process is setting up connecting several design tools and competences together. Each tool covers a different design discipline such as aerodynamics, structure, propulsion and systems. This paper focuses on the integration of the sub-system design discipline with the others in order to obtain a complete and optimized aircraft preliminary design. All design parameters used to integrate the sub-system branch with the others are discussed as for their redefinition within the different detail level of the design.


2012 ◽  
Vol 215-216 ◽  
pp. 362-367
Author(s):  
Yi Qi Huang ◽  
Gan Wei Cai ◽  
Yu Jiang ◽  
Zhao Yu Luo

This paper introduced the method of multidisciplinary design optimization based on genetic algorithm. The basic structure and new auxiliary braking mechanism of permanent magnet retarder was analyzed. The influences of magnetic field parameters, structural design parameters, rotor parameters and permanent magnet temperature parameters on the behaviors performance of the permanent magnet retarder were discussed. The conceptual model of permanent magnet retarder was developed to maximize the brake torque of the permanent magnet retarder. The design variables included the radial width and the axis length of permanent magnet, the number of permanent magnet, the radius of rotor, the thickness of rotor, and the air gas. The constraint conditions included permitting temperature of rotor, saturation magnetic flux density of magnet material, and relation of structural geometry. The results of design optimization variables were obtained by applying genetic algorithm. The multidisciplinary design optimization in this paper is an effective method for the global design optimization of the permanent magnet retarder.


Author(s):  
Julia Madrid ◽  
Petter Andersson ◽  
Rikard Söderberg ◽  
Kristina Wärmefjord ◽  
Donatas Kveselys ◽  
...  

AbstractThe automation capabilities and virtual tools within engineering disciplines, such as structural mechanics and aerodynamics, enable efficient Multidisciplinary Design Optimization (MDO) approaches to evaluate and optimize the performance of a large number of design variants during early design stages of aircraft components. However, for components that are designed to be welded, in which multiple functional requirements are satisfied by one single welded structure, the automation and simulation capabilities to evaluate welding-producibility and predict welding quality (geometrical deformation, weld bead geometrical quality, cracks, pores, etc) are limited. Besides the complexity of simulating all phenomena within the welding process, one of the main problems in welded integrated components is the existing coupling between welding quality metrics and product geometry. Welding quality can vary for every new product geometrical variant. Thus, there is a need of analyzing rapidly and virtually the interaction and sensitivity coefficients between design parameters and welding quality to predict welding producibility. This paper presents as a result an automated and interactive welding-producibility evaluation approach. This approach incorporates a data-based of welding-producibility criteria, as well as welding simulation and metamodel methods, which enable an interactive and automated evaluation of welding quality of a large number of product variants. The approach has been tested in an industrial use-case involving a multidisciplinary design process of aircraft components. The results from analyzing the welding-producibility of a set of design variants have been plotted together with the analysis results from other engineering disciplines resulting in an interactive tool built with parallel coordinate graphs. The approach proposed allows the generation and reuse of welding producibility information to perform analyses within a big spectrum of the design space in a rapid and interactive fashion, thus supporting designers on dealing with changes and taking fact-based decisions during the multidisciplinary design process.


2014 ◽  
Vol 945-949 ◽  
pp. 1482-1485
Author(s):  
Yi Qi Huang ◽  
Xiao Feng Li ◽  
Yuan Chen ◽  
Yu Jiang

This paper introduced the method of multidisciplinary design optimization. The conceptual model of permanent magnet retarder was developed to maximize the brake torque of the permanent magnet retarder. The influences of magnetic field parameters, structural design parameters, rotor parameters and permanent magnet temperature parameters on the behaviors performance of the permanent magnet retarder were discussed. The design variables included the radial width and the axis length of permanent magnet, the number of permanent magnet, the radius of rotor, the thickness of rotor, and the air gas. The multidisciplinary design optimization in this paper is an effective method for the global design optimization of the permanent magnet retarder.


2021 ◽  
Vol 9 (5) ◽  
pp. 478
Author(s):  
Hao Chen ◽  
Weikun Li ◽  
Weicheng Cui ◽  
Ping Yang ◽  
Linke Chen

Biomimetic robotic fish systems have attracted huge attention due to the advantages of flexibility and adaptability. They are typically complex systems that involve many disciplines. The design of robotic fish is a multi-objective multidisciplinary design optimization problem. However, the research on the design optimization of robotic fish is rare. In this paper, by combining an efficient multidisciplinary design optimization approach and a novel multi-objective optimization algorithm, a multi-objective multidisciplinary design optimization (MMDO) strategy named IDF-DMOEOA is proposed for the conceptual design of a three-joint robotic fish system. In the proposed IDF-DMOEOA strategy, the individual discipline feasible (IDF) approach is adopted. A novel multi-objective optimization algorithm, disruption-based multi-objective equilibrium optimization algorithm (DMOEOA), is utilized as the optimizer. The proposed MMDO strategy is first applied to the design optimization of the robotic fish system, and the robotic fish system is decomposed into four disciplines: hydrodynamics, propulsion, weight and equilibrium, and energy. The computational fluid dynamics (CFD) method is employed to predict the robotic fish’s hydrodynamics characteristics, and the backpropagation neural network is adopted as the surrogate model to reduce the CFD method’s computational expense. The optimization results indicate that the optimized robotic fish shows better performance than the initial design, proving the proposed IDF-DMOEOA strategy’s effectiveness.


Author(s):  
Dongqin Li ◽  
Yifeng Guan ◽  
Qingfeng Wang ◽  
Zhitong Chen

The design of ship is related to several disciplines such as hydrostatic, resistance, propulsion and economic. The traditional design process of ship only involves independent design optimization within each discipline. With such an approach, there is no guarantee to achieve the optimum design. And at the same time improving the efficiency of ship optimization is also crucial for modem ship design. In this paper, an introduction of both the traditional ship design process and the fundamentals of Multidisciplinary Design Optimization (MDO) theory are presented and a comparison between the two methods is carried out. As one of the most frequently applied MDO methods, Collaborative Optimization (CO) promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, Design Of Experiment (DOE) and a new support vector regression algorithm are applied to CO to construct statistical approximation model in this paper. The support vector regression algorithm approximates the optimization model and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method. Then this new Collaborative Optimization (CO) method using approximate technology is discussed in detail and applied in ship design which considers hydrostatic, propulsion, weight and volume, performance and cost. It indicates that CO method combined with approximate technology can effectively solve complex engineering design optimization problem. Finally, some suggestions on the future improvements are proposed.


Sign in / Sign up

Export Citation Format

Share Document