scholarly journals Aerodynamic Characteristics of a Single and Two Side-By-Side Vertical Circular Cylinders Located in the Incompressible Flow Field

2011 ◽  
Vol 14 (AEROSPACE SCIENCES) ◽  
pp. 1-14
Author(s):  
M. Gobran
Author(s):  
Stanley B. Mellsen

Abstract The effect of particles, such as dust in air on aerodynamic drag of circular cylinders was calculated for compressible flow at critical Mach number and for incompressible flow. The effect of compressibility was found negligible for particles larger than about 10 μm, for which the air can be considered a continuum. Drag coefficient and collection efficiency are provided for a wide range of inertia parameters and Reynolds numbers for both compressible and incompressible flow.


2016 ◽  
Vol 26 (5) ◽  
pp. 1416-1432 ◽  
Author(s):  
Saman Rashidi ◽  
Javad Abolfazli Esfahani ◽  
Mohammad Sadegh Valipour ◽  
Masoud Bovand ◽  
Ioan Pop

Purpose – The analysis of the flow field and heat transfer around a tube row or tube banks wrapped with porous layer have many related engineering applications. Examples include the reactor safety analysis, combustion, compact heat exchangers, solar power collectors, high-performance insulation for buildings and many another applications. The purpose of this paper is to perform a numerical study on flows passing through two circular cylinders in side-by-side arrangement wrapped with a porous layer under the influence of a magnetic field. The authors focus the attention to the effects of magnetic field, Darcy number and pitch ratio on the mechanism of convection heat transfer and flow structures. Design/methodology/approach – The Darcy-Brinkman-Forchheimer model for simulating the flow in porous medium along with the Maxwell equations for providing the coupling between the flow field and the magnetic field have been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Stuart and Darcy numbers are varied within the range of 0 < N < 3 and 1e-6 < Da < 1e-2, respectively, and Reynolds and Prandtl numbers are equal to Re=100 and Pr=0.71, respectively. Findings – The results show that the drag coefficient decreases for N < 0.6 and increases for N > 0.6. Also, the effect of magnetic field is negligible in the gap between two cylinders because the magnetic field for two cylinders counteracts each other in these regions. Originality/value – To the authors knowledge, in the open literature, flow passing over two circular cylinders in side-by-side arrangement wrapped with a porous layer has been rarely investigated especially under the influence of a magnetic field.


2013 ◽  
Vol 477-478 ◽  
pp. 277-280 ◽  
Author(s):  
Jie Yang ◽  
Song Ping Wu ◽  
Wen Xin Hou

Aerodynamic characteristic analysis of hypersonic cruise aircraft is more difficult than that of conventional aircraft, for the complex flow field simulation and inadequate amount of results under limited flight conditions. In this paper, numerical schemes applicable for hypersonic flow field are adopted to acquire a set of aerodynamic characteristics of a typical hypersonic cruise aircraft as sample data, based on which response surface models (RSM) are constructed to provide approximation of aerodynamic characteristics under any flight conditions within the design domain, finally the overall approximation performance of the response surface models are analyzed.


1994 ◽  
Vol 263 ◽  
pp. 245-270 ◽  
Author(s):  
Qiang Lin ◽  
D. L. Boyer ◽  
H. J. S. Fernando

The flow field induced by a sphere oscillating horizontally in a linearly stratified fluid is studied using a series of laboratory experiments. The resulting flows are shown to depend on the Stokes number β, the Keulegan–Carpenter number KC and the internal Froude number Fr. For Fr [clubs ] 0.2, it is shown that the nature of the resulting flow field is approximately independent of Fr and, based on this observation, a flow regime diagram is developed in the (β, KC)-plane. The flow regimes include: (i) fully-attached flow; (ii) attached vortices; (iii) local vortex shedding; and (iv) standing eddy pair. An internal-wave flow regime is also identified but, for such flows, the motion field is a function of Fr as well. Some quantitative measures are given to allow for future comparisons of the present results with analytical and/or numerical models. Wherever possible, the results are compared with the experiments of Tatsuno & Bearman (1990) on right circular cylinders oscillating in homogeneous fluids.


2019 ◽  
Vol 293 ◽  
pp. 01001
Author(s):  
Kan Zhou ◽  
Ge Huang ◽  
Bin Liu ◽  
Qi Hu

This paper uses CFD preprocessing software to build Van model and gridding it, then CFD software is used to simulation the outflow field of Van model, from which the distribution of pressure and velocity is obtained and the outflow field is analyzed. The calculation results indeed reflect the aerodynamic characteristics of the external flow field of the van, and the flow movement on the van surface is better simulated. In addition, the positions where the vortex motion is relatively severe are also found


Sign in / Sign up

Export Citation Format

Share Document