scholarly journals LABORATORY TESTING AND NUMERICAL ANALYSIS FOR EXPANSIVE SOIL TREATED BY POZZOLANIC MATERIALS

2021 ◽  
Vol 16 (60) ◽  
pp. 595-605
Author(s):  
Ahmed Zaki ◽  
M. Abu Bakr ◽  
Gad Abd El-Fattah
2022 ◽  
Vol 28 (1) ◽  
pp. 1-18
Author(s):  
Ahmed Al-Kalili ◽  
Ahmed S. Ali ◽  
Abbas J. Al-Taie

Soils that cause effective damages to engineer structures (such as pavement and foundation) are called problematic or difficult soils (include collapsible soil, expansive soil, etc.). These damages occur due to poor or unfavorited engineering properties, such as low shear strength, high compressibility, high volume changes, etc. In the case of expansive soil, the problem of the shrink-swell phenomenon, when the soil reacts with water, is more pronounced. To overcome such problems, soils can be treated or stabilized with many stabilization ways (mechanical, chemical, etc.). Such ways can amend the unfavorited soil properties. In this review, the pozzolanic materials have been selected to be presented and discussed as chemical stabilizers. The selected pozzolanic materials are traditional, industrial, or byproducts, ashes of agricultural wastes, and calcined-clay types. They are lime, cement, blast furnace slag, fly ash, silica fume, rice husk ash, sugarcane straw ash, egg ash, coconut husk ash, and metakaolin. In general, the stabilization of expansive soils with pozzolanic materials has an essential impact on swelling and Atterberg-limits and positively affects compaction and strength parameters. However, there is a wide range for the percentages of pozzolanic materials used as stabilizers. The content (15% to 20%) is the most ratios of the stabilizers used as an optimal percentage, and beyond this ratio, the addition of the pozzolanic materials produces an undesirable effect.


2016 ◽  
Vol 845 ◽  
pp. 62-69 ◽  
Author(s):  
Agus Setyo Muntohar

Many road and highway have been constructed over the expansive soil in Java island without proper soil improvement for the subgrade. The behavior of the column on the expansive soil needs for study numerically and large scale. In this study, a numerical analysis is performed to study the effect of swelling on the deformation of the soil stabilized column supported flexible pavement. The main focus of the research is to obtain the deformation due to swelling and vehicle loading. The methodology including comparison the differential settlement of the soil stabilized column supported flexible pavement and unsupported flexible pavement as control model. The numerical analysis was modeled using finite element method. The simulations result that the column installation to support flexible pavement reduced the heaving and differential settlement of the pavement effectively. In case the overlay was performed for rehabilitation and maintenance of the pavement, the mini-columns can be installed before the overlay works. However, the conclusions of the study were limited to the result of numerical modeling that depended on the applied material model and volumetric swelling.


2018 ◽  
Vol 55 (4) ◽  
pp. 514-527
Author(s):  
Lang Liu ◽  
David Elwood ◽  
Derek Martin ◽  
Rick Chalaturnyk

A method was developed to interpret the horizontal permeability (kh) from pressuremeter pressure hold tests (PHTs) of approximately 3 min duration. The method relies on a regression analysis of the numerical analysis simulating the consolidation of clay under a constant pressure boundary during undrained expansion. The method was applied to a series of PHTs performed in deep clay formations in the Seattle area. The interpreted permeabilities are thought to be more representative of in situ conditions than those determined by laboratory testing by virtue of reduced disturbance during sample recovery and preparation. Results could be improved with a further exclusion of the creep effect on PHTs.


Author(s):  
Sunarjo Leman ◽  
Fanniwati Itang ◽  
Jemy Wijaya

Penelitian numerik sebelumnya mengenai segmen Bata Keraton telah diperoleh kekuatan pikul segmen Bata Keraton adalah lebih kurang 1 ton/m2. Pada penelitian lain uji laboratorium dengan merangkai segmen Bata Keraton menjadi Balok Keraton diperoleh kekuatan pikul untuk bentang 2.0 meter berkisar antara 105-200 Kg dan bentang 3.0 meter berkisar antara 60-170 Kg. Penelitian menggunakan cara uji laboratorium membutuhkan material uji, struktur yang diuji dengan ukuran sebenarnya, sumber daya manusia untuk merakit dari bentuk segmen Bata Keraton tersebut menjadi bentuk Balok Keraton dengan besi tulangan serta membuat adukan spesi untuk merangkai Balok Keraton. Alternatif lain untuk mengetahui kapasitas pikul pada Balok Keraton adalah dengan melakukan analisa numerik menggunakan metode elemen hingga menggunakan perangkat lunak Autodesk Inventor Professional 2017. Pemodelan Balok Keraton untuk analisis numerik dibuat sama dengan kondisi Balok Keraton pada saat diuji di laboratorium dengan bentang 2 meter dan 3 meter. Pola pembebanan pada analisis numerik  dilakukan sama seperti pada uji laboratorium. Tujuan analisis numerik dengan metode elemen hingga ini adalah untuk mengetahui kapasitas pikul Balok Keraton dan membandingkan hasilnya dengan uji laboratorium. Hasil analisis pada penelitian ini diperoleh kapasitas pikul untuk Balok Keraton dengan bentang 2 meter menggunakan tulangan 8 mm dan 10 mm berkisar 80-110 Kg untuk 1 beban di tengah bentang dan untuk 2 beban berkisar 55-80 Kg/ perbeban, sedangkan untuk bentang 3 meter menggunakan tulangan 8 mm dan 10 mm diperoleh untuk 1 beban berkisar 65-85 Kg dan 2 beban berkisar 45-65 Kg/ perbeban. Hasil analisis numerik memberikan hasil kapasitas pikul beban lebih kecil 51-81 % dari pengujian di laboratorium. Previous numerical research on the Keraton Brick segment has obtained the strength of the Keraton Brick segment bearing weight is approximately 1 ton / m2. In another study the laboratory test by stringing the Bata Keraton segment into the Keraton Beam obtained the strength of the pikul for a span of 2.0 meters ranging from 105-200 kg and span of 3.0 meters ranging from 60-170 kg. Research using laboratory testing methods requires test materials, structures that are tested with actual size, human resources to assemble from the shape of the Keraton Bata segment into a Keraton Beam with reinforcing iron and make a specific mixture to assemble the Keraton Beams. Another alternative to determine the bearing capacity of the Keraton Beams is by conducting numerical analysis using the finite element method using Autodesk Inventor Professional 2017. The Keraton Beam Modeling for numerical analysis is made the same as the condition of the Keraton Beams when tested in a laboratory with a span of 2 meters and 3 meters . The pattern of loading in numerical analysis is done the same as in laboratory tests. The purpose of numerical analysis with finite element method is to determine the bearing capacity of the Keraton Beams and compare the results with laboratory tests. The results of the analysis in this study obtained bearing capacity for the KeratonBeams with a span of 2 meters using reinforcement 8 mm and 10 mm ranging from 80-110 kg for 1 load in the middle span and for 2 loads ranging from 55 to 80 kg / load, while for a span of 3 meters using 8 mm and 10 mm reinforcement obtained for 1 load ranging from 65 to 85 kg and 2 loads ranging from 45 to 65 kg / load. The results of numerical analysis give the result of a smaller load bearing capacity of 51-81% than in laboratory testing.


Sign in / Sign up

Export Citation Format

Share Document