H-Pile Driving Induced Vibrations: Reduced-Scale Laboratory Testing and Numerical Analysis

IFCEE 2018 ◽  
2018 ◽  
Author(s):  
Athina Grizi ◽  
Adda Athanasopoulos-Zekkos ◽  
Richard D. Woods
Author(s):  
Marcio Yamamoto ◽  
Sotaro Masanobu ◽  
Satoru Takano ◽  
Shigeo Kanada ◽  
Tomo Fujiwara ◽  
...  

In this article, we present the numerical analysis of a Free Standing Riser. The numerical simulation was carried out using a commercial riser analysis software suit. The numerical model’s dimensions were the same of a 1/70 reduced scale model deployed in a previous experiment. The numerical results were compared with experimental results presented in a previous article [1]. Discussion about the model and limitations of the numerical analysis is included.


Author(s):  
Cezar Augusto Bellezi ◽  
Liang-Yee Cheng ◽  
Kazuo Nishimoto

The green water phenomenon is boarding of sea water onto the deck due to high amplitude waves, which can cause several damages to the equipment on deck. In the present paper the green water phenomenon on three-dimensional models is analyzed using the Moving Particles Semi-Implicit Method (MPS), a fully lagrangian method for incompressible flow. This work is focused on the validation of the method comparing the numerical results with experimental results for green water on reduced scale models. The pressure on sensors over the deck of the models shows good agreement with experimental data.


2011 ◽  
Vol 243-249 ◽  
pp. 1597-1604
Author(s):  
Shu Hong Sun ◽  
Xue Song Zhang ◽  
An Bang Gu

The research work is described about the numerical analysis and reduced scale prototype model test of Chongqing Jiayue Bridge’s PC beam, which has some special structure details. The structure’s practicality of the PC box girder’s anchorage is demonstrated through computing, at the same time, the security of the anchorage undertaking kiloton force is experimented by test. Some conclusions and suggestions are drowning through such research work which are helpful to design and construction.


2014 ◽  
Vol 45 ◽  
pp. 1146-1154 ◽  
Author(s):  
Antonio Costantino ◽  
Marilena Musto ◽  
Giuseppe Rotondo ◽  
Alessandro Zullo

2018 ◽  
Vol 55 (4) ◽  
pp. 514-527
Author(s):  
Lang Liu ◽  
David Elwood ◽  
Derek Martin ◽  
Rick Chalaturnyk

A method was developed to interpret the horizontal permeability (kh) from pressuremeter pressure hold tests (PHTs) of approximately 3 min duration. The method relies on a regression analysis of the numerical analysis simulating the consolidation of clay under a constant pressure boundary during undrained expansion. The method was applied to a series of PHTs performed in deep clay formations in the Seattle area. The interpreted permeabilities are thought to be more representative of in situ conditions than those determined by laboratory testing by virtue of reduced disturbance during sample recovery and preparation. Results could be improved with a further exclusion of the creep effect on PHTs.


Author(s):  
Sunarjo Leman ◽  
Fanniwati Itang ◽  
Jemy Wijaya

Penelitian numerik sebelumnya mengenai segmen Bata Keraton telah diperoleh kekuatan pikul segmen Bata Keraton adalah lebih kurang 1 ton/m2. Pada penelitian lain uji laboratorium dengan merangkai segmen Bata Keraton menjadi Balok Keraton diperoleh kekuatan pikul untuk bentang 2.0 meter berkisar antara 105-200 Kg dan bentang 3.0 meter berkisar antara 60-170 Kg. Penelitian menggunakan cara uji laboratorium membutuhkan material uji, struktur yang diuji dengan ukuran sebenarnya, sumber daya manusia untuk merakit dari bentuk segmen Bata Keraton tersebut menjadi bentuk Balok Keraton dengan besi tulangan serta membuat adukan spesi untuk merangkai Balok Keraton. Alternatif lain untuk mengetahui kapasitas pikul pada Balok Keraton adalah dengan melakukan analisa numerik menggunakan metode elemen hingga menggunakan perangkat lunak Autodesk Inventor Professional 2017. Pemodelan Balok Keraton untuk analisis numerik dibuat sama dengan kondisi Balok Keraton pada saat diuji di laboratorium dengan bentang 2 meter dan 3 meter. Pola pembebanan pada analisis numerik  dilakukan sama seperti pada uji laboratorium. Tujuan analisis numerik dengan metode elemen hingga ini adalah untuk mengetahui kapasitas pikul Balok Keraton dan membandingkan hasilnya dengan uji laboratorium. Hasil analisis pada penelitian ini diperoleh kapasitas pikul untuk Balok Keraton dengan bentang 2 meter menggunakan tulangan 8 mm dan 10 mm berkisar 80-110 Kg untuk 1 beban di tengah bentang dan untuk 2 beban berkisar 55-80 Kg/ perbeban, sedangkan untuk bentang 3 meter menggunakan tulangan 8 mm dan 10 mm diperoleh untuk 1 beban berkisar 65-85 Kg dan 2 beban berkisar 45-65 Kg/ perbeban. Hasil analisis numerik memberikan hasil kapasitas pikul beban lebih kecil 51-81 % dari pengujian di laboratorium. Previous numerical research on the Keraton Brick segment has obtained the strength of the Keraton Brick segment bearing weight is approximately 1 ton / m2. In another study the laboratory test by stringing the Bata Keraton segment into the Keraton Beam obtained the strength of the pikul for a span of 2.0 meters ranging from 105-200 kg and span of 3.0 meters ranging from 60-170 kg. Research using laboratory testing methods requires test materials, structures that are tested with actual size, human resources to assemble from the shape of the Keraton Bata segment into a Keraton Beam with reinforcing iron and make a specific mixture to assemble the Keraton Beams. Another alternative to determine the bearing capacity of the Keraton Beams is by conducting numerical analysis using the finite element method using Autodesk Inventor Professional 2017. The Keraton Beam Modeling for numerical analysis is made the same as the condition of the Keraton Beams when tested in a laboratory with a span of 2 meters and 3 meters . The pattern of loading in numerical analysis is done the same as in laboratory tests. The purpose of numerical analysis with finite element method is to determine the bearing capacity of the Keraton Beams and compare the results with laboratory tests. The results of the analysis in this study obtained bearing capacity for the KeratonBeams with a span of 2 meters using reinforcement 8 mm and 10 mm ranging from 80-110 kg for 1 load in the middle span and for 2 loads ranging from 55 to 80 kg / load, while for a span of 3 meters using 8 mm and 10 mm reinforcement obtained for 1 load ranging from 65 to 85 kg and 2 loads ranging from 45 to 65 kg / load. The results of numerical analysis give the result of a smaller load bearing capacity of 51-81% than in laboratory testing.


2015 ◽  
Vol 773-774 ◽  
pp. 1535-1541 ◽  
Author(s):  
Agus Sulaeman ◽  
Felix N.L. Ling ◽  
Martosuro Sajiharjo

The observations and tests under small scale in 1-gravity condition are intended to obtain a comparative behavior of a model and prototype of geotechnical case by imposing the scaling relations. Simulations to represent a related structure, sub-soil and failure mechanism need to be prepared prior to do observations in this modeling. To simulate pile loading test (PLT) on clay, the following models of: clay, pile, driving simulation and procedure of PLT based on ASTM D4410 were set-up. The PLT in reduced scale environment was then followed by performing normal practice of full scale PLT in original clay site. Load settlement curves obtained from both “pile loading test” in small and full scale simulations showed closely good agreement. Further observation and investigation on simulation of pile loading test in clay revealed that modeling the following: clay sub-soil resulted in new properties of clay, em=ep+λLn(N) which reflects stress scaling factor, N, pile size and pile driving hammer need scaling factor n and n3 respectively whereas PLT time needs time scaling factor, tp (n)0.5.


Sign in / Sign up

Export Citation Format

Share Document