scholarly journals Influence of sandblasting parameters and luting materials on microshear bond strength to a CAD/CAM hybrid ceramic material

2020 ◽  
Vol 66 (3) ◽  
pp. 1637-1648
Author(s):  
Sayed Ghorab ◽  
Dina Farahat
2017 ◽  
Vol 88 (2) ◽  
pp. 221-226 ◽  
Author(s):  
S. Kutalmış Buyuk ◽  
Ahmet Serkan Kucukekenci

ABSTRACT Objective: To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents. Materials and Methods: Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests. Results: The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa). Conclusions: CAD/CAM material types and bonding procedures affected bond strength (P < .05), but the etching procedure did not (P > .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1681 ◽  
Author(s):  
Salim Ongun ◽  
Sevcan Kurtulmus-Yilmaz ◽  
Gökçe Meriç ◽  
Mutahhar Ulusoy

Polymer-infiltrated ceramic-network (PICN) material is a new type of material used for the hybrid abutments of dental implants. This study aimed to compare flexural strength, bond strengths, and fracture-resistance values of PICN with lithium disilicate ceramic (LDS) and to evaluate the effect of thermocycling on the tested parameters. Twenty specimens were fabricated using computer-aided design and manufacturing (CAD-CAM) technology for each material according to three-point bending (n = 10), microshear bond strength (µSBS), and a fracture-resistance test (hybrid abutment, n = 10). All specimens of each test group were divided into two subgroups, thermocycled or nonthermocycled. Hybrid abutments were cemented on titanium insert bases and then fixed on implants to compare fracture resistance. Failure loads were recorded for each test and data were statistically analyzed. Thermocycling decreased bond strength to the resin luting agent and the fracture-resistance values of both materials (p < 0.001), whereas flexural-strength values were not affected. LDS ceramic showed significantly higher flexural strength, bond strength, and fracture-resistance values than PICN material (p < 0.001). Within the limitations of this study, LDS may be a preferable hybrid-abutment material to PICN in terms of mechanical and bonding properties.


2017 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
Meita Andriyani ◽  
Sonya Harwasih ◽  
Eny Inayati

Background :  Ceramic is superior in aesthetic but fragile and breakable under bite pressure . Lack of understanding of material requirements for resistance in the oral cavity and minimal ceramic processing techniques is the initial cause of the failure. Hybrid ceramic dental restoration is a material that combines the good properties of ceramics and composites that have elasticity and ensures high strength and minimize the wall thickness of the restoration. Mechanical manufacture of dental restorations currently growing, CAD CAM systems are becoming popular in the field of dentistry. CAD CAM provides the advantage that the effectiveness of the time, does not require a lot of human resources, and produce a restoration with good quality. Purpose:  To explain hybrid ceramic material and techniques of making  hybrid ceramic dental restorations with CAD CAM system. Review: Hybrid ceramic is a material that combines the advantages of ceramics and composite elasticity. This material contains a hybrid structure with two networks, ceramic and polymer are linked to each other, known as double hybrid network. It added that the structure of the ceramic feldspathic network (86% wt) is reinforced by a polymer network (14% wt) are integrated as a polymer network filling cavities that exist in the network and make its structure ceramic hybrid ceramic material becomes denser. Conclusion: Hybrid ceramic having chewing load capacity and high elasticity, flexural strength  150-160 Mpa and fracture toughness 1.5 Mpa, higher than conventional ceramics. Mechanical manufacture of dental restorations using ceramic hybrid materials with CAD CAM method begins with scanning, selection of materials and tooth shade, designing, milling, followed by finishing, polishing, ends with staining and glazing.


2019 ◽  
Vol 10 (2) ◽  
pp. 120-127
Author(s):  
Sevki Cinar ◽  
Bike Altan ◽  
Gokhan Akgungor

Objective: To compare the bond strength of monolithic CAD-CAM materials to resin cement using different surface treatment methods. Materials and Methods: Lithium disilicate glass ceramic (IPS e-max CAD), zirconia-reinforced lithium silicate ceramic (Vita Suprinity), resin nanoceramic (Lava Ultimate), and hybrid ceramic (Vita Enamic) were used. Five groups of CAD-CAM blocks were treated as follows: control (C), HF etching (HF), HF etching + silanization (HF + S), sandblasting (SB), and sandblasting + silanization (SB + S). After surface treatments, SEM analyses were conducted. Specimens were cemented with self-adhesive resin cement (Theracem) and stored in distilled water at 37°C for 24 h. Shear bond strength (SBS) was measured, and failure types were categorized. Results were analyzed using two-way ANOVA and the post-hoc Tukey test. Results: Statistical analysis revealed significant differences between SBS values obtained for different surface treatments and CAD-CAM block types ( P < .001). Among the CAD-CAM materials, the highest SBS was reported in the HF + S group for Vita Enamic. Although IPS e.max CAD, Vita Suprinity, and Vita Enamic showed higher bond strength when treated with HF + S, Lava Ultimate has the highest bond strength value when treated with SB + S. Conclusions: The bond strength of CAD-CAM materials was influenced by surface treatment. Additionally, silanization significantly improved the bond strength of all materials except Lava Ultimate.


2017 ◽  
Vol 62 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Bogdan Culic ◽  
◽  
Cristina Gasparik ◽  
Mihai Varvara ◽  
Carina Culic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document