scholarly journals Relationship between Shear Bond Strength and Fluoride Content of Fluoridated Teeth as Stated by Scanning Electron Microscopy and X-Ray Fluorescence Analysis

2020 ◽  
Vol 66 (1) ◽  
pp. 597-609
Author(s):  
Samy El-Safty ◽  
Tasneem Almohamady
2012 ◽  
Vol 37 (1) ◽  
pp. 28-36 ◽  
Author(s):  
L Giachetti ◽  
D Scaminaci Russo ◽  
M Baldini ◽  
C Goracci ◽  
M Ferrari

Clinical Relevance Aged silorane composite restorations can be repaired with a methacrylate-based resin composite by using a phosphate-methacrylate–based adhesive as the intermediate layer.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3578
Author(s):  
Mihaela Pastrav ◽  
Andrea Maria Chisnoiu ◽  
Ovidiu Pastrav ◽  
Codruta Sarosi ◽  
Doina Pordan ◽  
...  

Orthodontic adhesives have similar properties in terms of fluoride release, roughness, shear bond strength or cement debris for specific clinical conditions. Three commercial consecrated orthodontic adhesives (Opal Seal®, Blugloo®, Light Bond®) were compared with an experimental orthodontic material (C1). Brackets were bonded to enamel using a self-etch technique followed by adhesive application and then de-bonded 60 days later. Share bond strength evaluation, scanning electron microscopy, atomic force microscopy and fluoride release analysis were performed. The highest amount of daily and cumulative fluoride release was obtained for the experimental material, while the lowest value was observed for Opal Seal®. The materials evaluated in the current study presented adequate shear bond strength, with the experimental material having a mean value higher than Opal Seal and Blugloo. The atomic force microscopy measurements indicated that the smoothest initial sample is Opal Seal® followed by Light Bond®. Scanning electron microscopy evaluation indicated different aspects of cement debris on the enamel and/or bracket surface, according to the type of adhesive. The experimental material C1 presented adequate properties in terms of shear bond strength, fluoride release, roughness and enamel characteristics after de-bonding, compared to the commercial materials. Under these circumstances, it can be considered for clinical testing.


2014 ◽  
Vol 809-810 ◽  
pp. 313-318
Author(s):  
Peng Cheng Song ◽  
Tong Jiang Peng ◽  
Hong Juan Sun ◽  
Yu Cao Yu

Fibri-form silica was extracted from short chrysotile fibers by mix-roasting with ammonium bisulfate. The fibri-form silica were characterized by X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), thermogravimetry and differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR) and N2 adsorption isotherms. The results show that the fibri-form silica with disordered crystalline structure, but also in fibrous morphology. The surface area and pore volume of fibri-form silica are 181.66 m2/ g and 0.44 cc/ g, respectively. The structure of fibri-form silica is stable, no phase transformed from 50 to 1200 oC.


Sign in / Sign up

Export Citation Format

Share Document