The effect of Zinc Nanoparticles on Adult rat Prostate gland and the Possible Protective role of Rutin: histological and biochemical study

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Heba Hashem ◽  
Mariam Amin
Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1235-1245 ◽  
Author(s):  
Liwei Huang ◽  
Yongbing Pu ◽  
David Hepps ◽  
David Danielpour ◽  
Gail S. Prins

Axis positioning and tissue determination during development involve coordinated expression of Hox genes throughout the body. The most posterior Hox gene clusters are involved in prostate organogenesis. In the present study, we characterized and compared the expression profiles of posterior (5′) Hox genes in the separate lobes of the adult rat prostate gland, the coagulating gland, seminal vesicles, and epididymis using quantitative real-time RT-PCR. These genes include Hoxa9–11, Hoxa13, Hoxd13, and Hoxb13. We identified a unique Hox code for each of these organs and propose that this contributes to the organ-specific and prostate lobe-specific identities in the adult rat. Using the ventral prostate (VP) as a model, we characterized the Hox genes expression patterns over time from birth through adulthood. Expression levels of the three Hox13 genes and Hoxa10 were significantly higher in the adult VP compared with the neonatal developing VP suggesting an important role during adult homeostasis. In contrast, Hoxa9 and Hoxa11 levels declined after morphogenesis suggesting a specific developmental role. Overall, the Hoxb13 gene exhibited the most striking temporal and organ-specific differences. Using in situ hybridization and immunohistochemistry, a distinct Hoxb13 anterior-to-posterior expression gradient was observed with the highest expression levels in the VP luminal epithelial cells, moderate levels in the lateral prostate, and low expression in the dorsal prostate. An expression gradient was also observed along the ductal length in all three prostate lobes with strongest expression at the distal tips and limited expression in the proximal ducts. After infection with a lentivirus expressing the Hoxb13 gene, NRP-152 cells cultured under nondifferentiating conditions exhibited robust cytokeratin 8 immunostain indicating that Hoxb13 expression drives luminal cell differentiation in the rat epithelium. Androgen regulation of prostatic Hox gene expression was examined during development in vitro and after castration in the adult rat. In the neonatal VP, all six Hox genes were significantly up-regulated by androgens, whereas none of the genes were affected by testosterone in the lateral prostate. In the adult rat, castration resulted in up-regulation of Hoxa9 and Hoxa13 in the VP and down-regulation of Hoxb13 in the dorsal prostate and lateral prostate. Taken together, we conclude that the prostatic Hox genes reach a destined expression level at specific developmental time points in the prostate gland and possess differential androgenic regulation in a temporal and lobe-specific manner. We suggest that this timely Hox code participates in determining lobe-specific prostatic identity and cellular differentiation.


1979 ◽  
Vol 82 (1) ◽  
pp. 171-NP ◽  
Author(s):  
ILSE LASNITZKI ◽  
TAKEO MIZUNO

SUMMARY Rat prostate glands are induced de novo by androgens in 16·5-day-old male and female urogenital sinuses in vitro as epithelial buds projecting into the surrounding mesenchyme. The role of the mesenchyme in this process has been investigated in various epithelial-mesenchymal recombinations in organ culture. Isolated epithelium did not form buds but required the presence of the mesenchyme to do so. This requirement seemed to be specific; in the presence of testosterone or dihydrotestosterone only urogenital mesenchyme increased cell division in the urogenital epithelium and stimulated prostatic bud formation. In contrast, heterotypic mesenchyme did not affect epithelial mitosis and failed to induce buds while heterotypic epithelia did not respond to urogenital mesenchyme. In recombinants of urogenital mesenchyme pretreated with androgen and untreated urogenital epithelium, grown in androgen-free medium, the majority of explants developed prostatic buds while only a few buds were formed from epithelium pretreated with androgen when it was recombined with untreated mesenchyme. The role of the mesenchyme in the loss of androgen responsiveness of the older female sinuses was examined in heterochronic recombinants. It was found that the old female mesenchyme failed to induce buds in young epithelium while young male or female mesenchymes induced them in the old female epithelium. The results suggest that the urogenital mesenchyme is essential for the initiation of the foetal rat prostate gland and that it may be a target for androgens and complement or mediate their effect on the epithelium.


2017 ◽  
Vol 12 (4) ◽  
pp. 455
Author(s):  
Uzma Saleem ◽  
Shakila Sabir ◽  
Bashir Ahmad

<p>Chemotherapy-induced alopecia affects the pathological as well as the psychological aspects of the cancer patient. In the present study, the protective role of Nigella sativa was evaluated in both adult and newborn albino rats. The anagen phase was first induced. N. sativa oil, N. sativa decoction (5%, 10% and 15%) and minoxidil lotion (standard) were applied daily to the rats two days after the depilation. During the anagen VI phase of the hair follicles, alopecia was induced by giving cyclophosphamide 125 mg/kg, ip to the adult rat and 50 mg/kg to the newborn rats. Cyclophosphamide-induced the alopecia to the whole depilated area of skin in adult rat while alopecia totalis was observed in the newborn rat disease control group. N. sativa oil, N. sativa decoction (5%) showed a significant protective effect against cyclophosphamide-induced alopecia. In conclusion, it is evident that N. sativa provides significant protection against chemotherapy-induced alopecia.</p><p><strong>Video Clip of Methodology</strong>:</p><p>1 min 43 sec:   <a href="https://www.youtube.com/v/AKhk27V3juE">Full Screen</a>   <a href="https://www.youtube.com/watch?v=AKhk27V3juE">Alternate</a></p>


2020 ◽  
Vol 23 (04) ◽  
pp. 239-259
Author(s):  
Hayder Hasan Taher ◽  
Nahla J. M. Al-Shahery

Sign in / Sign up

Export Citation Format

Share Document