scholarly journals STUDY THE EFFECT OF PARTIAL ROOTZONE DRYING IRRIGATION ON TOMATO CROP UNDER EGYPTIAN CONDITION

2018 ◽  
Vol 35 (3) ◽  
pp. 881-898
Author(s):  
A. Gomaa ◽  
A. Samak ◽  
E. Elshkhaby
Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1152
Author(s):  
Rebekah Waller ◽  
Murat Kacira ◽  
Esther Magadley ◽  
Meir Teitel ◽  
Ibrahim Yehia

Recognizing the growing interest in the application of organic photovoltaics (OPVs) with greenhouse crop production systems, in this study we used flexible, roll-to-roll printed, semi-transparent OPV arrays as a roof shade for a greenhouse hydroponic tomato production system during a spring and summer production season in the arid southwestern U.S. The wavelength-selective OPV arrays were installed in a contiguous area on a section of the greenhouse roof, decreasing the transmittance of all solar radiation wavelengths and photosynthetically active radiation (PAR) wavelengths (400–700 nm) to the OPV-shaded area by approximately 40% and 37%, respectively. Microclimate conditions and tomato crop growth and yield parameters were measured in both the OPV-shaded (‘OPV’) and non-OPV-shaded (‘Control’) sections of the greenhouse. The OPV shade stabilized the canopy temperature during midday periods with the highest solar radiation intensities, performing the function of a conventional shading method. Although delayed fruit development and ripening in the OPV section resulted in lower total yields compared to the Control section (24.6 kg m−2 and 27.7 kg m−2, respectively), after the fourth (of 10 total) harvests, the average weekly yield, fruit number, and fruit mass were not significantly different between the treatment (OPV-shaded) and control group. Light use efficiency (LUE), defined as the ratio of total fruit yield to accumulated PAR received by the plant canopy, was nearly twice as high as the Control section, with 21.4 g of fruit per mole of PAR for plants in the OPV-covered section compared to 10.1 g in the Control section. Overall, this study demonstrated that the use of semi-transparent OPVs as a seasonal shade element for greenhouse production in a high-light region is feasible. However, a higher transmission of PAR and greater OPV device efficiency and durability could make OPV shades more economically viable, providing a desirable solution for co-located greenhouse crop production and renewable energy generation in hot and high-light intensity regions.


2015 ◽  
Vol 38 (12) ◽  
pp. 1877-1884
Author(s):  
Alberto Gabino Martínez-Gutiérrez ◽  
Angélica Bautista Cruz ◽  
Cirenio Escamirosa Tinoco ◽  
Juana Yolanda López Cruz ◽  
Miguel Urrestarazu

2005 ◽  
Vol 24 (3) ◽  
pp. 203-210 ◽  
Author(s):  
Jorge A. Zegbe ◽  
M. Hossein Behboudian ◽  
Brent E. Clothier

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 296-306 ◽  
Author(s):  
W. E. Fry ◽  
M. T. McGrath ◽  
A. Seaman ◽  
T. A. Zitter ◽  
A. McLeod ◽  
...  

The tomato late blight pandemic of 2009 made late blight into a household term in much of the eastern United States. Many home gardeners and many organic producers lost most if not all of their tomato crop, and their experiences were reported in the mainstream press. Some CSAs (Community Supported Agriculture) could not provide tomatoes to their members. In response, many questions emerged: How did it happen? What was unusual about this event compared to previous late blight epidemics? What is the current situation in 2012 and what can be done? It's easiest to answer these questions, and to understand the recent epidemics of late blight, if one knows a bit of the history of the disease and the biology of the causal agent, Phytophthora infestans.


2004 ◽  
Vol 31 (10) ◽  
pp. 971 ◽  
Author(s):  
Darren M. Mingo ◽  
Julian C. Theobald ◽  
Mark A. Bacon ◽  
William J. Davies ◽  
Ian C. Dodd

Tomato (Lycopersicon esculentum Mill.) plants were grown in either a glasshouse (GH) or a controlled environment cabinet (CEC) to assess the effects of partial rootzone drying (PRD) on biomass allocation. Control and PRD plants received the same amounts of water. In control plants, water was equally distributed between two compartments of a split-root system. In PRD plants, only one compartment was watered while the other was allowed to dry. At the end of each drying cycle, wet and dry compartments were alternated. In the GH, total biomass did not differ between PRD and control plants after four cycles of PRD, but PRD increased root biomass by 55% as resources were partitioned away from shoot organs. In the CEC, leaf water potential did not differ between treatments at the end of either of two cycles of PRD, but stomatal conductance of PRD plants was 20% less at the end of the first cycle than at the beginning. After two cycles of PRD in the CEC, biomass did not differ between PRD and control plants, but PRD increased root biomass by 19% over the control plants. The promotion of root biomass in PRD plants was associated with the alternation of wet and dry compartments, with increased root biomass occurring in the re-watered compartment after previous exposure to soil drying. Promotion of root biomass in field-grown PRD plants may allow the root system to access resources (water and nutrients) that would otherwise be unavailable to control plants. This may contribute to the ability of PRD plants to maintain similar leaf water potentials to conventionally irrigated plants, even when smaller irrigation volumes are supplied.


2015 ◽  
Vol 147 ◽  
pp. 103-115 ◽  
Author(s):  
Sameh Saadi ◽  
Mladen Todorovic ◽  
Lazar Tanasijevic ◽  
Luis S. Pereira ◽  
Claudia Pizzigalli ◽  
...  

2014 ◽  
pp. 563-568 ◽  
Author(s):  
B. Albert ◽  
S. Le Quillec ◽  
E. Brajeul ◽  
D. Lesourd ◽  
D. Loda
Keyword(s):  
The West ◽  

Sign in / Sign up

Export Citation Format

Share Document