Assessment of Uncertainties in Soil Parameters Using Finite Element Coupling Technique

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
mohamed mourad ◽  
Mohamed Elgendy ◽  
Ehab Tolba ◽  
Said Galal
Author(s):  
Andrew Lees ◽  
Michael Dobie

Polymer geogrid reinforced soil retaining walls have become commonplace, with routine design generally carried out by limiting equilibrium methods. Finite element analysis (FEA) is becoming more widely used to assess the likely deformation behavior of these structures, although in many cases such analyses over-predict deformation compared with monitored structures. Back-analysis of unit tests and instrumented walls improves the techniques and models used in FEA to represent the soil fill, reinforcement and composite behavior caused by the stabilization effect of the geogrid apertures on the soil particles. This composite behavior is most representatively modeled as enhanced soil shear strength. The back-analysis of two test cases provides valuable insight into the benefits of this approach. In the first case, a unit cell was set up such that one side could yield thereby reaching the active earth pressure state. Using FEA a test without geogrid was modeled to help establish appropriate soil parameters. These parameters were then used to back-analyze a test with geogrid present. Simply using the tensile properties of the geogrid over-predicted the yield pressure but using an enhanced soil shear strength gave a satisfactory comparison with the measured result. In the second case a trial retaining wall was back-analyzed to investigate both deformation and failure, the failure induced by cutting the geogrid after construction using heated wires. The closest fit to the actual deformation and failure behavior was provided by using enhanced fill shear strength.


2015 ◽  
Vol 32 (7) ◽  
pp. 2100-2119 ◽  
Author(s):  
Ali Johari ◽  
Jaber Rezvani Pour ◽  
Akbar Javadi

Purpose – Liquefaction of soils is defined as significant reduction in shear strength and stiffness due to increase in pore water pressure. This phenomenon can occur in static (monotonic) or dynamic loading patterns. However, in each pattern, the inherent variability of the soil parameters indicates that this problem is of a probabilistic nature rather than being deterministic. The purpose of this paper is to present a method, based on random finite element method, for reliability assessment of static liquefaction of saturated loose sand under monotonic loading. Design/methodology/approach – The random finite element analysis is used for reliability assessment of static liquefaction of saturated loose sand under monotonic loading. The soil behavior is modeled by an elasto-plastic effective stress constitutive model. Independent soil parameters including saturated unit weight, peak friction angle and initial plastic shear modulus are selected as stochastic parameters which are modeled using a truncated normal probability density function (pdf). Findings – The probability of liquefaction is assessed by pdf of modified pore pressure ratio at each depth. For this purpose pore pressure ratio is modified for monotonic loading of soil. It is shown that the saturated unit weight is the most effective parameter, within the selected stochastic parameters, influencing the static soil liquefaction. Originality/value – This research focuses on the reliability analysis of static liquefaction potential of sandy soils. Three independent soil parameters including saturated unit weight, peak friction angle and initial plastic shear modulus are considered as stochastic input parameters. A computer model, coded in MATLAB, is developed for the random finite element analysis. For modeling of the soil behavior, a specific elasto-plastic effective stress constitutive model (UBCSAND) was used.


2000 ◽  
Vol 37 (6) ◽  
pp. 1368-1382 ◽  
Author(s):  
Kevin J Bentley ◽  
M Hesham El Naggar

Recent destructive earthquakes have highlighted the need for increased research into the revamping of design codes and building regulations to prevent further catastrophic losses in terms of human life and economic assets. The present study investigated the response of single piles to kinematic seismic loading using the three-dimensional finite element program ANSYS. The objectives of this study were (i) to develop a finite element model that can accurately model the kinematic soil–structure interaction of piles, accounting for the nonlinear behaviour of the soil, discontinuity conditions at the pile–soil interface, energy dissipation, and wave propagation; and (ii) to use the developed model to evaluate the kinematic interaction effects on the pile response with respect to the input ground motion. The static performance of the model was verified against exact available solutions for benchmark problems including piles in elastic and elastoplastic soils. The geostatic stresses were accounted for and radiating boundaries were provided to replicate actual field conditions. Earthquake excitation with a low predominant frequency was applied as an acceleration–time history at the base bedrock of the finite element mesh. To evaluate the effects of the kinematic loading, the responses of both the free-field soil (with no piles) and the pile head were compared. It was found that the effect of the response of piles in elastic soil was slightly amplified in terms of accelerations and Fourier amplitudes. However, for elastoplastic soil with separation allowed, the pile head response closely resembled the free-field response to the low-frequency seismic excitation and the range of pile and soil parameters considered in this study.Key words: numerical modelling, dynamic, lateral, piles, kinematic, seismic.


2015 ◽  
Vol 773-774 ◽  
pp. 1518-1523 ◽  
Author(s):  
Aminaton Marto ◽  
Mohsen Oghabi ◽  
Nor Zurairahetty Mohd Yunus

Bearing capacity and settlement are two important parameters in geotechnical engineering. The bearing capacity of circular foundations on sandy soils is important to geotechnical practicing engineers. Design of foundations includes soil parameters and bearing capacity of foundation. This paper presents the results of laboratory experimental model tests of circular footings supported on sand deposit under static load. The finite element software Abaqus is used to compare the results. The effects of the relative density of the sand (30%, 50%, and 70%) and the diameter of circular footing (75 mm and 100 mm) are investigated. It can be concluded that the experimental test results fit quite well with the results of numerical method.


2011 ◽  
Vol 48 (3) ◽  
pp. 425-438 ◽  
Author(s):  
Won Taek Oh ◽  
Sai K. Vanapalli

The bearing capacity and settlement of foundations are determined experimentally or modelled numerically based on conventional soil mechanics for saturated soils. In both methods, bearing capacity and settlement are estimated based on the applied vertical stress versus surface settlement relationship. These methods are also conventionally used for soils that are in an unsaturated condition, ignoring the contribution of matric suction. In this study, a methodology is proposed to estimate the bearing capacity and settlement of shallow foundations in unsaturated sands by predicting the applied vertical stress versus surface settlement relationship. The proposed method requires soil parameters obtained under only saturated conditions (i.e., effective cohesion, effective internal friction angle, and modulus of subgrade reaction from model footing test) along with the soil-water characteristic curve (SWCC). In addition, finite element analyses are undertaken to simulate the applied vertical stress versus surface settlement relationship for unsaturated sands. The proposed method and finite element analyses are performed using an elastic – perfectly plastic model. The predicted bearing capacities and settlements from the proposed method and finite element analyses are compared with published model footing test results. There is good agreement between measured and predicted results.


2012 ◽  
Vol 479-481 ◽  
pp. 457-461
Author(s):  
Dong Hui Chen ◽  
Xin Lu ◽  
Xing Wang Chai ◽  
Bao Gang Wang ◽  
Hong Xia Guo ◽  
...  

In this paper,soil parameters and the collected data were tested and processed, and the changing trends of force with drilling depth were obtained and the maximum force applying to the working components was picked up. Compared with the smooth working component, the force applying to the unsmooth working components is smaller. Some parameters needed in Drucker-Prager soil model were measured and modified according to the basic tests. The simulation model was built in the finite element software -ANSYS. The simulation result is consistent with the actual testing result, which confirms the finite element model is correct .


1973 ◽  
Vol 10 (2) ◽  
pp. 129-144 ◽  
Author(s):  
N. A. Skermer

A simple trapezoidal element is presented for use in the analysis of thin core rockfill dams with nonlinear soil parameters. Handling of nonlinear soil parameters and allowance for the intermediate principal stress in plane strain problems are discussed. The analysis of El Infiernillo rockfill dam using trapezoids in the core and transitions, and variable Young's modulus and Poisson's ratio, reveals the transfer of stress that takes place around the core. Comparisons of strain observations at El Infiernillo Dam with results from the analysis are good, except in zones of compacted rockfill. It appears that the actual stiffness of compacted granular fills may be seriously underestimated, if soil parameters are based on data obtained from triaxial tests on normally consolidated samples. A fundamental understanding of soil deformation behavior would lead to an improvement in the finite element analysis of soil structure.


Author(s):  
Brock A. Mascardelli ◽  
Simon S. Park ◽  
Theodor Freiheit

Microend milling offers the ability to machine microparts of complex geometry relatively quickly when compared with photolithographic techniques. The key to good surface quality is the minimization of tool chatter. This requires an understanding of the milling tool and the milling structure system dynamics. However, impact hammer testing cannot be applied directly to the prediction of tool tip dynamics because microend mills are fragile, with tip diameters as small as 10μm. This paper investigates the application of the receptance coupling technique to mathematically couple the spindle/micromachine and arbitrary microtools with different geometries. The frequency response functions (FRFs) of the spindle/micromachine tool are measured experimentally through impact hammer testing, utilizing laser displacement and capacitance sensors. The dynamics of an arbitrary tool substructure are determined through modal finite element analyses. Joint rotational dynamics are indirectly determined through experimentally measuring the FRFs of gauge tools. From the FRFs, chatter conditions are predicted and verified through micromilling experiments.


Sign in / Sign up

Export Citation Format

Share Document