scholarly journals Multiplex PCR of Some Antibiotic Resistance Genes of Methicillin Resistant Staphylococcus Aureus (MRSA) Isolated from Infected Cat Fish (Clarias garipeneaus).

2017 ◽  
Vol 22 (1) ◽  
pp. 31-42
Author(s):  
Ahmed Khafagy ◽  
R. El Gamal ◽  
Hala F. ◽  
Samaa A.
2019 ◽  
Vol 22 (4) ◽  
pp. 419-427
Author(s):  
S. Nouri Gharajalar ◽  
M. Onsori

Multidrug resistant Staphylococcus aureus strains are a major health care problem both in humans and animals. In this work we described three multiplex PCR assays for detection of clinically relevant antibiotic resistance genes in S. aureus isolated from dog dental plaques. Thirty dental plaque samples were collected; then cultural, biochemical and molecular tests performed for isolation and identification of S. aureus from samples. The antibiotic susceptibility of the isolates were checked by Kirby Bauer disc diffusion method and the prevalence of antibiotic resistance genes determined using multiplex PCR assay. As a result S. aureus was isolated from 18 dog plaque samples. Fifteen of these isolates were resistant to penicillin. The mecA gene was more prevalent than blaZ among penicillin-resistant bacteria. Ten of the isolates were resistant to tetracycline. The percentage of tetM was higher than tetK among them. Also, 10 of the isolates were resistant to cefazolin among them bla TEM detected in higher rate than blaSHV and blaOXA-1. Hence multiplex PCR assay is a suitable method for detection of antibiotic resistance patterns of S. aureus isolates.


2008 ◽  
Vol 53 (4) ◽  
pp. 357-362 ◽  
Author(s):  
T. Zmantar ◽  
K. Chaieb ◽  
F. Ben Abdallah ◽  
A. Ben Kahla-Nakbi ◽  
A. Ben Hassen ◽  
...  

2019 ◽  
Vol 17 (6) ◽  
pp. 930-943 ◽  
Author(s):  
Adegboyega O. Oladipo ◽  
Oluwatosin G. Oladipo ◽  
Cornelius C. Bezuidenhout

Abstract Multi-drug resistance traits of Staphylococcus species especially methicillin-resistant Staphylococcus aureus (MRSA) in the clinical settings are well established. Of environmental concern is hospital effluents discharging into wastewaters. This article investigated the prevalence and detection of antibiotic resistance genes in Staphylococcus species from clinical and environmental sources in Ile-Ife, Nigeria. Standard culture-based and molecular protocols were used. Seventy-six (27 clinical, 14 hospital effluent and 35 environmental) Staphylococcus isolates were recovered: 56.58% were coagulase-negative and 43.42% coagulase-positive (S. aureus). For the clinical isolates, 10, 6, 4, 4 and 1 were isolated from urine, skin, wounds, blood and pus, respectively. Isolates were resistant to methicillin and amoxycillin (91.7%), cloxacillin (88.0%), ciprofloxacin (84.0%), ofloxacin (83.3%), azithromycin (78.0%), ceftazidime (76.0%), gentamycin (75.0%), cefuroxime (75.0%) and erythromycin (72.0%). Nearly, all isolates (90.8%) had multiple antibiotic resistance (MAR) index >0.2. Overall MAR indices for Staphylococcus species isolated from the clinical, hospital effluent and environmental wastewaters were relatively similar (0.482; 0.500; 0.435). mecA, nuc and luk-pvl genes were detected in S. aureus, while mecA was detected in S. arlettae, S. sciuri, S. cohnii, S. epidermidis and S. saprophyticus. This study informs on the potential contamination of environmental waters downstream from hospitals and possible impacts that this could have on human and animal health.


2020 ◽  
Vol 295 (32) ◽  
pp. 10870-10884 ◽  
Author(s):  
J. Andrew N. Alexander ◽  
Mariia Radaeva ◽  
Dustin T. King ◽  
Henry F. Chambers ◽  
Artem Cherkasov ◽  
...  

Methicillin-resistant Staphylococcus aureus (MRSA) infections cause significant mortality and morbidity globally. MRSA resistance to β-lactam antibiotics is mediated by two divergons that control levels of a β-lactamase, PC1, and a penicillin-binding protein poorly acylated by β-lactam antibiotics, PBP2a. Expression of genes encoding these proteins is controlled by two integral membrane proteins, BlaR1 and MecR1, which both have an extracellular β-lactam–binding sensor domain. Here, we solved the X-ray crystallographic structures of the BlaR1 and MecR1 sensor domains in complex with avibactam, a diazabicyclooctane β-lactamase inhibitor at 1.6–2.0 Å resolution. Additionally, we show that S. aureus SF8300, a clinically relevant strain from the USA300 clone of MRSA, responds to avibactam by up-regulating the expression of the blaZ and pbp2a antibiotic-resistance genes, encoding PC1 and PBP2a, respectively. The BlaR1–avibactam structure of the carbamoyl-enzyme intermediate revealed that avibactam is bound to the active-site serine in two orientations ∼180° to each other. Although a physiological role of the observed alternative pose remains to be validated, our structural results hint at the presence of a secondary sulfate-binding pocket that could be exploited in the design of future inhibitors of BlaR1/MecR1 sensor domains or the structurally similar class D β-lactamases. The MecR1–avibactam structure adopted a singular avibactam orientation similar to one of the two states observed in the BlaR1–avibactam structure. Given avibactam up-regulates expression of blaZ and pbp2a antibiotic resistance genes, we suggest further consideration and research is needed to explore what effects administering β-lactam–avibactam combinations have on treating MRSA infections.


2000 ◽  
Vol 44 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Francis Martineau ◽  
François J. Picard ◽  
Nicolas Lansac ◽  
Christian Ménard ◽  
Paul H. Roy ◽  
...  

ABSTRACT Clinical isolates of Staphylococcus aureus (a total of 206) and S. epidermidis (a total of 188) from various countries were tested with multiplex PCR assays to detect clinically relevant antibiotic resistance genes associated with staphylococci. The targeted genes are implicated in resistance to oxacillin (mecA), gentamicin [aac(6′)-aph(2")], and erythromycin (ermA, ermB, ermC, andmsrA). We found a nearly perfect correlation between genotypic and phenotypic analysis for most of these 394 strains, showing the following correlations: 98% for oxacillin resistance, 100% for gentamicin resistance, and 98.5% for erythromycin resistance. The discrepant results were (i) eight strains found to be positive by PCR for mecA or ermC but susceptible to the corresponding antibiotic based on disk diffusion and (ii) six strains of S. aureus found to be negative by PCR for mecA or for the four erythromycin resistance genes targeted but resistant to the corresponding antibiotic. In order to demonstrate in vitro that the eight susceptible strains harboring the resistance gene may become resistant, we subcultured the susceptible strains on media with increasing gradients of the antibiotic. We were able to select cells demonstrating a resistant phenotype for all of these eight strains carrying the resistance gene based on disk diffusion and MIC determinations. The four oxacillin-resistant strains negative for mecA were PCR positive for blaZand had the phenotype of β-lactamase hyperproducers, which could explain their borderline oxacillin resistance phenotype. The erythromycin resistance for the two strains found to be negative by PCR is probably associated with a novel mechanism. This study reiterates the usefulness of DNA-based assays for the detection of antibiotic resistance genes associated with staphylococcal infections.


2020 ◽  
Vol 13 ◽  
pp. 117863372097658
Author(s):  
Eric S Donkor ◽  
Fleischer CN Kotey

The oral cavity harbors a multitude of commensal flora, which may constitute a repository of antibiotic resistance determinants. In the oral cavity, bacteria form biofilms, and this facilitates the acquisition of antibiotic resistance genes through horizontal gene transfer. Recent reports indicate high methicillin-resistant Staphylococcus aureus (MRSA) carriage rates in the oral cavity. Establishment of MRSA in the mouth could be enhanced by the wide usage of antibiotic prophylaxis among at-risk dental procedure candidates. These changes in MRSA epidemiology have important implications for MRSA preventive strategies, clinical practice, as well as the methodological approaches to carriage studies of the organism.


Open Biology ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 170094 ◽  
Author(s):  
Mehul Jani ◽  
Soham Sengupta ◽  
Kelsey Hu ◽  
Rajeev K. Azad

Staphylococcus aureus is a versatile pathogen that is capable of causing infections in both humans and animals. It can cause furuncles, septicaemia, pneumonia and endocarditis. Adaptation of S. aureus to the modern hospital environment has been facilitated, in part, by the horizontal acquisition of drug resistance genes, such as mecA gene that imparts resistance to methicillin. Horizontal acquisitions of islands of genes harbouring virulence and antibiotic resistance genes have made S. aureus resistant to commonly used antibiotics. To decipher genomic islands (GIs) in 22 hospital- and 9 community-associated methicillin-resistant S. aureus strains and classify a subset of GIs carrying virulence and resistance genes as pathogenicity and resistance islands respectively, we applied a host of methods for localizing genomic islands in prokaryotic genomes. Surprisingly, none of the frequently used GI prediction methods could perform well in delineating the resistance islands in the S. aureus genomes. Rather, a gene clustering procedure exploiting biases in codon usage for identifying horizontally transferred genes outperformed the current methods for GI detection, in particular in identifying the known islands in S. aureus including the SCC mec island that harbours the mecA resistance gene. The gene clustering approach also identified novel, as yet unreported islands, with many of these found to harbour virulence and/or resistance genes. These as yet unexplored islands may provide valuable information on the evolution of drug resistance in S. aureus .


Sign in / Sign up

Export Citation Format

Share Document