scholarly journals Battery Charging Application with Thermoelectric Generators as Energy Harvesters

2019 ◽  
Vol 3 (1) ◽  
pp. 248
Author(s):  
Zakariya M. Dalala ◽  
Zaid S. Hamdan ◽  
Hussein Al-Taani ◽  
Mohammad Al-Addous ◽  
Aiman Albatayneh

This paper discusses and presents the implementation of a boost converter as power electronic interface to be used with the thermoelectric generator (TEG). The common application for such system is the battery charger. The boundary conditions for battery chargers include the charging current and battery voltage limits which have to be respected throughout the charging process, while the maximization of the power generated from the TEG is a global target that is desired to be met as much as possible. Coordinated control algorithm that collectively combines these constraints is the main focus of this work. Novel global control algorithm is proposed and verified in this paper with detailed analysis that shows the effectiveness of the proposed algorithm. Dual control loops for the voltage and current of the boost converter will be designed and analyzed to satisfy the source and load demands. Maximum power point tracking (MPPT) mode, power matching mode and voltage stabilization mode will be integrated in the control algorithm of the battery charger. This paper puts a schematic design for a system that harvests energy from a thermoelectric generator bank of a TEG1-12611-6.0 TEG modules in order to charge a battery bank of Samsung ICR18650 Batteries using constant current (CC) and constant voltage (CV) charging profiles.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Sheng-Yu Tseng ◽  
Cheng-Tao Tsai

This paper proposes a photovoltaic (PV) power system for battery charger applications. The charger uses an interleaving boost converter with a single-capacitor turn-off snubber to reduce voltage stresses of active switches at turn-off transition. Therefore, active switches of the charger can be operated with zero-voltage transition (ZVT) to decrease switching losses and increase conversion efficiency. In order to draw the maximum power from PV arrays and obtain the optimal power control of the battery charger, a perturbation-and-observation method and microchip are incorporated to implement maximum power point tracking (MPPT) algorithm and power management. Finally, a prototype battery charger is built and implemented. Experimental results have verified the performance and feasibility of the proposed PV power system for battery charger applications.


2018 ◽  
Vol 7 (3) ◽  
pp. 1508 ◽  
Author(s):  
R Pavan Kumar Naidu ◽  
S Meikandasivam

In this paper, grid-connected photovoltaic (PV) system is presented. PV system consists of a photovoltaic module, a boost converter, and voltage source inverter. ANFIS based ICM (Incremental Conductance Method) MPPT (Maximum Power Point Tracking) controller is utilized to produce gate signal for DC-DC boost converter. This controller is used for optimizing the total performance of the Photovoltaic system in turn the errors were reduced in Voltage Source Inverter (VSI). The grid-connected PV system performance is evaluated and har-monics occurred in the system are decreased. The proposed methodology is implemented in MATLAB/Simulink. 


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bo Sun ◽  
Yongquan You ◽  
Zhiyong Zhang ◽  
Chao Li

As a green and renewable energy source, photovoltaic power is of great significance for the sustainable development of energy and has been increasingly exploited. The photovoltaic controller is the key component of a photovoltaic power generation system, and its central technology is the maximum power point tracking technology. In this paper, a mathematical model of photovoltaic cells is firstly established, the output characteristics of photovoltaic cells are analyzed, the main factors that affect the output efficiency of photovoltaic cells are obtained, and it is proved that the most important factor that affects the output power is the light intensity. Therefore, in the design, the maximum power point of the photovoltaic cell is tracked by the control algorithm and can maximize the use of photovoltaic output power fast charging. The key to the design of a photovoltaic controller is the design of control algorithm. So, an improved fuzzy control algorithm is proposed to overcome the shortcomings of the traditional maximum power point tracking (MPPT) algorithm. The algorithm can consider tracking both speed and convergence, but the algorithm requires high input and output fuzzy domain parameters, and although the tracking speed is fast, the stability of convergence is poor. For the limitation of fuzzy control algorithm, considering the property of the Versoria function, an MPPT design method for an intelligent controller based on the Versoria variable step algorithm is further proposed. According to the output characteristics of photovoltaic cells, three parameters, α, β, and γ, are set to solve the tracking speed and tracking stability. In order to reduce the static error, a genetic factor is proposed to sum up the historical error to effectively improve the tracking stability. The simulation results show that the algorithm can track the maximum power point quickly and has good tracking speed and stability. This algorithm can be used in engineering practice effectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
M. Srikanth ◽  
B. Pakkiraiah ◽  
Poonam Upadhyay ◽  
S. Tara Kalyani

This paper develops the photovoltaic bidirectional inverter (BI) operated in dual mode for the seamless power transfer to DC and AC loads. Normal photovoltaic (PV) output voltage is fed to boost converter, but in space application, boost converter is not so preferable. To overcome this, buck and boost converters are proposed in this paper. Duty cycle to this converter is provided with the help of the outcome of the maximum power point tracking (MPPT) controller. This can be implemented by using perturbation and observation method. The MPPT will operate the switch between buck and boost modes. When the output voltage of a PV array is close to the dc bus voltage, then the bidirectional inverter can fulfill both rectification and grid connected mode. To control the power flow between dc bus and ac grid, a dc distribution system is used to regulate the dc bus voltage to a convinced level. Moreover, the bidirectional inverter must fulfill grid connection (sell power) and rectification (buy power) with power factor correction (PFC) to control the power flow between dc bus and ac grid. The simulations and hardware experimental results of a 2.5 kVA circuit are presented to validate the performance of the proposed dual-mode seamless power transfer.


2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Ahmad Shaharuddin Mat Su, ◽  
Rasli Abd Ghani ◽  
Slamet Slamet

This paper presents the proposed model and simulation of a DC to DC converter with maximum power point tracking (MPPT) using fuzzy logic controller (FLC) for a standalone Photovoltaic (PV) System. This research will focus on the developing high performance DC to DC converter with fuzzy logic controller based to extract the maximum power that generated by the PV panel. The system composed of the PV array and DC-DC boost converter with MPPT system. The maximum power point tracking control is based on adaptive fuzzy logic to control ON/OFF time of IGBT switch of DC-DC boost converter. The proposed DC to DC converter is designed by using the Multisim software while the controller programme will be carried out by using the Matlab Simulink software. Pulse width modulation will be generated by the controller to trigger the IGBT gate. The performance of the proposed model is evaluated by the simulation and the result show that our proposed converter can convert more power from generated voltage. By using the fuzzy logic method to track the maximum power of the PV array, it is faster and the voltage is stable.


Sign in / Sign up

Export Citation Format

Share Document