scholarly journals Characterizing past and future trend and frequency of extreme rainfall in urban catchments: a case study

2020 ◽  
Vol 3 (1) ◽  
pp. 288-305
Author(s):  
Philip Mzava ◽  
Patrick Valimba ◽  
Joel Nobert

Abstract Urban communities in developing countries are one of the most vulnerable areas to extreme rainfall events. The availability of local information on extreme rainfall is therefore critical for proper planning and management of urban flooding impacts. This study examined the past and future characteristics of extreme rainfall in the urban catchments of Dar es Salaam, Tanzania. Investigation of trends and frequency of annual, seasonal and extreme rainfall was conducted, with the period 1967–2017 taken as the past scenario and 2018–2050 as the future scenario; using data from four key ground-based weather stations and RCM data respectively. Mann–Kendall trend analysis and Sen's slope estimator were used in studying changes in rainfall variability. Frequencies of extreme rainfall events were modeled using the Generalized Pareto model. Overall, the results of trend analysis provided evidence of a significant increase in annual and seasonal maximum rainfall and intensification of extreme rainfall in the future under the RCP4.5 CO2 concentration scenario. It was determined that extreme rainfall will become more frequent in the future, and their intensities were observed to increase approximately between 20 and 25% relative to the past. The findings of this study may help to develop adaptation strategies for urban flood control in Dar es Salaam.

Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1631 ◽  
Author(s):  
Yi-Chiung Chao ◽  
Chi-Wen Chen ◽  
Hsin-Chi Li ◽  
Yung-Ming Chen

In recent years, extreme weather phenomena have occurred worldwide, resulting in many catastrophic disasters. Under the impact of climate change, the frequency of extreme rainfall events in Taiwan will increase, according to a report on climate change in Taiwan. This study analyzed riverbed migrations, such as degradation and aggradation, caused by extreme rainfall events under climate change for the Choshui River, Taiwan. We used the CCHE1D model to simulate changes in flow discharge and riverbed caused by typhoon events for the base period (1979–2003) and the end of the 21st century (2075–2099) according to the climate change scenario of representative concentration pathways 8.5 (RCP8.5) and dynamical downscaling of rainfall data in Taiwan. According to the results on flow discharge, at the end of the 21st century, the average peak flow during extreme rainfall events will increase by 20% relative to the base period, but the time required to reach the peak will be 8 h shorter than that in the base period. In terms of the results of degradation and aggradation of the riverbed, at the end of the 21st century, the amount of aggradation will increase by 33% over that of the base period. In the future, upstream sediment will be blocked by the Chichi weir, increasing the severity of scouring downstream. In addition, due to the increased peak flow discharge in the future, the scouring of the pier may be more serious than it is currently. More detailed 2D or 3D hydrological models are necessary in future works, which could adequately address the erosive phenomena created by bridge piers. Our results indicate that not only will flood disasters occur within a shorter time duration, but the catchment will also face more severe degradation and aggradation in the future.


2018 ◽  
Vol 11 (1) ◽  
pp. 92-96
Author(s):  
Olumuyiwa Idowu Ojo ◽  
Femi Dakaye ◽  
Masengo Francois Ilunga

Author(s):  
Yonas Tadesse Alemu

This study presents analysis of Rainfall variability and trends of extreme rainfall events in the Oda Gunufeta -Cherecha -Dechatu watershed, Awash Drainage Basin, Eastern Ethiopia. The study employed the coefficient of variation and the Precipitation Concentration Index (PCI) as statistical descriptors of rainfall variability. The indices at the five stations were subjected to non-parametric Mann-Kendall test to detect the trend over the period between 1985 to 2014. The results of the study revealed that, the watershed experiences moderate inter-annual rainfall variability. The Belg rainfall shows high variability than Kiremt rainfall. Highest Belg & Kiremt rainfall variability is observed in Dire Dawa with coefficient of variation of 46% and 40% respectively. The annual PCI for the watershed in all the stations under investigation during the record periods showed that 100% of the years for which the annual PCI was estimated fell within the irregular precipitation distribution range or high precipitation concentration. The irregular precipitation distribution also extended to all the stations in short rainy season (Belg rainfall) and in two stations in the main rainy season (Kiremt season). With regard to the rainfall trend, the annual rainfall has showed a negative trend in most of the stations for the period 1985-2014. The Mann–Kendall trend test during the Kiremt season shows a positive trend in Dengego, Dire Dawa, Combolcha and Haramaya and the increasing tendency is significant at p<0.1 in Degego, p<0.05 in Dire Dawa, p <0.05 in Combolcha and p <0.01 in Haramaya. The heavy rainfall events, the 90th & 95th percentiles, in all the five stations showed an increasing pattern but except in Combolcha the trends are not statistically significant. This implies that the watershed has been under increased rainfall intensity and this in turn has the potential cause for high risk of flood occurrences.


Author(s):  
Emanuele B. Manke ◽  
Claudia F. A. Teixeira-Gandra ◽  
Rita de C. F. Damé ◽  
André B. Nunes ◽  
Maria C. C. Chagas Neta ◽  
...  

ABSTRACT Although several studies have evaluated the intensity-duration-frequency relationships of extreme rainfall events, these relationships under different seasonal conditions remain relatively unknown. Thus, this study aimed to determine whether the intensity-duration-frequency relationships obtained seasonally from the rainfall records in the winter and summer represent the maximum rainfall events for the city of Pelotas, Rio Grande do Sul state, Brazil. Pluviographic data from 1982 to 2015 were used to create two seasonal series: one for the summer from December 21 to March 20 and the other for the winter from June 21 to September 22. These seasonal relationships were compared with the annual pluviographic data. The intensity, duration, and frequency relationships obtained from the summer rain data adequately represented the maximum rainfall in Pelotas, Rio Grande do Sul state, Brazil. The maximum intensity values of rainfall obtained from the relationship of intensity, duration, and frequency for the winter did not adequately encapsulate the occurrence of rain with greater intensities.


Atmosphere ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 497 ◽  
Author(s):  
Uvirkaa Akumaga ◽  
Aondover Tarhule

The magnitude and timing of seasonal rainfall is vitally important to the health and vitality of key agro-ecological and social-economic systems of the Niger River Basin. Given this unique context, knowledge concerning how climate change is likely to impact future rainfall characteristics and patterns is critically needed for adaptation and mitigation planning. Using nine ensemble bias-corrected climate model projection results under RCP4.5 and RCP8.5 (RCP—Representative Concentration Pathway) emissions scenarios at the mid-future time period, 2021/2025-2050 from the Coordinated Regional Climate Downscaling Experiments (CORDEX) dataset; this study provides a comprehensive analysis of the projected changes in rainfall characteristics in three agro-ecological zones of the Niger River Basin. The results show an increase in the average rainfall of about 5%, 10–20% and 10–15% for the Southern Guinea, Northern Guinea and Sahelian zones, respectively, relative to the baseline, 1981/1985–2005. On the other hand, the change in future rainfall intensities are largely significant and the frequency of rainfall at the low, heavy and extreme rainfall events in the future decrease at most locations in the Niger River Basin. The results also showed an increase in the frequency of moderate rainfall events at all locations in the basin. However, in the Northern Guinea and Sahel locations, there is an increase in the frequency of projected heavy and extreme rainfall events. The results reveal a shift in the future onset/cessation and a shortening of the duration of the rainy season in the basin. Specifically, the mean date of rainfall onset will be delayed by between 10 and 32 days. The mean onset of cessation will also be delayed by between 10 and 21 days. It is posited that the projected rainfall changes pose serious risks for food security of the region and may require changes in the cropping patterns and management.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1397 ◽  
Author(s):  
Óscar E. Coronado-Hernández ◽  
Ernesto Merlano-Sabalza ◽  
Zaid Díaz-Vergara ◽  
Jairo R. Coronado-Hernández

Frequency analysis of extreme events is used to estimate the maximum rainfall associated with different return periods and is used in planning hydraulic structures. When carrying out this type of analysis in engineering projects, the hydrological distributions that best fit the trend of maximum 24 h rainfall data are unknown. This study collected maximum 24 h rainfall records from 362 stations distributed throughout Colombia, with the goal of guiding hydraulic planners by suggesting the probability distributions they should use before beginning their analysis. The generalized extreme value (GEV) probability distribution, using the weighted moments method, presented the best fits of frequency analysis of maximum daily precipitation for various return periods for selected rainfall stations in Colombia.


Sign in / Sign up

Export Citation Format

Share Document