scholarly journals Hydraulic transient wave separation algorithm using a dual-sensor with applications to pipeline condition assessment

2017 ◽  
Vol 19 (5) ◽  
pp. 752-765 ◽  
Author(s):  
He Shi ◽  
Jinzhe Gong ◽  
Aaron C. Zecchin ◽  
Martin F. Lambert ◽  
Angus R. Simpson

Over the past two decades, techniques have been developed for pipeline leak detection and condition assessment using hydraulic transient waves (i.e. water hammer waves). A common measurement strategy for applications involves analysis of signals from a single pressure sensor located at each measurement site. The measured pressure trace from a single sensor is a superposition of reflections coming from upstream, and downstream, of the sensor. This superposition brings complexities for signal processing applications for fault detection analysis. This paper presents a wave separation algorithm, accounting for transmission dynamics, which enables the extraction of directional travelling waves by using two closely placed pressure sensors at one measurement site (referred to as a dual-sensor). Two typical transient incident pressure waves, a pulse wave and a step wave, are investigated in numerical simulations and laboratory experiments. Comparison of the wave separation results with their predicted counterparts shows the wave separation algorithm is successful. The results also show that the proposed wave separation technique facilitates transient-based pipeline condition assessment.

2019 ◽  
Vol 21 (2) ◽  
pp. 371-379 ◽  
Author(s):  
He Shi ◽  
Jinzhe Gong ◽  
Peter R. Cook ◽  
John W. Arkwright ◽  
Gretel M. Png ◽  
...  

Abstract The use of two pressure transducers in close proximity can enable the separation of the directional travelling pressure waves in pipelines. However, the implementation of this measurement strategy in real water pipes is difficult due to the lack of closely located access points. This paper reports the use of a customised in-pipe fibre optic pressure sensor array for hydraulic transient wave separation and pipeline condition assessment. The fibre optic pressure sensor array can be inserted into a pressurised pipeline through a single access point. The array consists of multiple fibre Bragg grating (FBG)-based pressure sensors in close proximity (∼0.5 m apart). A previously developed wave separation algorithm is adapted to analyse the transient pressure measurement from the FBG sensors. The resultant directional pressure waves are then used to detect pipe sections with a thinner wall thickness. A challenge is the influence of the in-pipe fibre optic sensing cable on the transient pressure measurement. The impact is analysed and adjustments to the pipeline condition assessment algorithm are undertaken to resolve the issue. The successful experimental application verifies the usefulness of the in-pipe fibre optic sensor array, which can facilitate transient-based pipeline condition assessment for buried water pipes with limited access points.


2019 ◽  
Vol 457 ◽  
pp. 181-196 ◽  
Author(s):  
Wei Zeng ◽  
Jinzhe Gong ◽  
Benjamin S. Cazzolato ◽  
Aaron C. Zecchin ◽  
Martin F. Lambert ◽  
...  

2021 ◽  
Vol 11 (16) ◽  
pp. 7256
Author(s):  
Daryush D. Mehta ◽  
James B. Kobler ◽  
Steven M. Zeitels ◽  
Matías Zañartu ◽  
Emiro J. Ibarra ◽  
...  

The purpose of this paper is to report on the first in vivo application of a recently developed transoral, dual-sensor pressure probe that directly measures intraglottal, subglottal, and vocal fold collision pressures during phonation. Synchronous measurement of intraglottal and subglottal pressures was accomplished using two miniature pressure sensors mounted on the end of the probe and inserted transorally in a 78-year-old male who had previously undergone surgical removal of his right vocal fold for treatment of laryngeal cancer. The endoscopist used one hand to position the custom probe against the surgically medialized scar band that replaced the right vocal fold and used the other hand to position a transoral endoscope to record laryngeal high-speed videoendoscopy of the vibrating left vocal fold contacting the pressure probe. Visualization of the larynx during sustained phonation allowed the endoscopist to place the dual-sensor pressure probe such that the proximal sensor was positioned intraglottally and the distal sensor subglottally. The proximal pressure sensor was verified to be in the strike zone of vocal fold collision during phonation when the intraglottal pressure signal exhibited three characteristics: an impulsive peak at the start of the closed phase, a rounded peak during the open phase, and a minimum value around zero immediately preceding the impulsive peak of the subsequent phonatory cycle. Numerical voice production modeling was applied to validate model-based predictions of vocal fold collision pressure using kinematic vocal fold measures. The results successfully demonstrated feasibility of in vivo measurement of vocal fold collision pressure in an individual with a hemilaryngectomy, motivating ongoing data collection that is designed to aid in the development of vocal dose measures that incorporate vocal fold impact collision and stresses.


2019 ◽  
Vol 9 (20) ◽  
pp. 4360 ◽  
Author(s):  
Daryush D. Mehta ◽  
James B. Kobler ◽  
Steven M. Zeitels ◽  
Matías Zañartu ◽  
Byron D. Erath ◽  
...  

A critical element in understanding voice production mechanisms is the characterization of vocal fold collision, which is widely considered a primary etiological factor in the development of common phonotraumatic lesions such as nodules and polyps. This paper describes the development of a transoral, dual-sensor intraglottal/subglottal pressure probe for the simultaneous measurement of vocal fold collision and subglottal pressures during phonation using two miniature sensors positioned 7.6 mm apart at the distal end of a rigid cannula. Proof-of-concept testing was performed using excised whole-mount and hemilarynx human tissue aerodynamically driven into self-sustained oscillation, with systematic variation of the superior–inferior positioning of the vocal fold collision sensor. In the hemilarynx experiment, signals from the pressure sensors were synchronized with an acoustic microphone, a tracheal-surface accelerometer, and two high-speed video cameras recording at 4000 frames per second for top–down and en face imaging of the superior and medial vocal fold surfaces, respectively. As expected, the intraglottal pressure signal exhibited an impulse-like peak when vocal fold contact occurred, followed by a broader peak associated with intraglottal pressure build-up during the de-contacting phase. As subglottal pressure was increased, the peak amplitude of the collision pressure increased and typically reached a value below that of the average subglottal pressure. Results provide important baseline vocal fold collision pressure data with which computational models of voice production can be developed and in vivo measurements can be referenced.


2020 ◽  
Vol 146 (8) ◽  
pp. 04020056
Author(s):  
Wei Zeng ◽  
Aaron C. Zecchin ◽  
Jinzhe Gong ◽  
Martin F. Lambert ◽  
Angus R. Simpson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document