scholarly journals Toward Development of a Vocal Fold Contact Pressure Probe: Bench-Top Validation of a Dual-Sensor Probe Using Excised Human Larynx Models

2019 ◽  
Vol 9 (20) ◽  
pp. 4360 ◽  
Author(s):  
Daryush D. Mehta ◽  
James B. Kobler ◽  
Steven M. Zeitels ◽  
Matías Zañartu ◽  
Byron D. Erath ◽  
...  

A critical element in understanding voice production mechanisms is the characterization of vocal fold collision, which is widely considered a primary etiological factor in the development of common phonotraumatic lesions such as nodules and polyps. This paper describes the development of a transoral, dual-sensor intraglottal/subglottal pressure probe for the simultaneous measurement of vocal fold collision and subglottal pressures during phonation using two miniature sensors positioned 7.6 mm apart at the distal end of a rigid cannula. Proof-of-concept testing was performed using excised whole-mount and hemilarynx human tissue aerodynamically driven into self-sustained oscillation, with systematic variation of the superior–inferior positioning of the vocal fold collision sensor. In the hemilarynx experiment, signals from the pressure sensors were synchronized with an acoustic microphone, a tracheal-surface accelerometer, and two high-speed video cameras recording at 4000 frames per second for top–down and en face imaging of the superior and medial vocal fold surfaces, respectively. As expected, the intraglottal pressure signal exhibited an impulse-like peak when vocal fold contact occurred, followed by a broader peak associated with intraglottal pressure build-up during the de-contacting phase. As subglottal pressure was increased, the peak amplitude of the collision pressure increased and typically reached a value below that of the average subglottal pressure. Results provide important baseline vocal fold collision pressure data with which computational models of voice production can be developed and in vivo measurements can be referenced.

2021 ◽  
Vol 11 (16) ◽  
pp. 7256
Author(s):  
Daryush D. Mehta ◽  
James B. Kobler ◽  
Steven M. Zeitels ◽  
Matías Zañartu ◽  
Emiro J. Ibarra ◽  
...  

The purpose of this paper is to report on the first in vivo application of a recently developed transoral, dual-sensor pressure probe that directly measures intraglottal, subglottal, and vocal fold collision pressures during phonation. Synchronous measurement of intraglottal and subglottal pressures was accomplished using two miniature pressure sensors mounted on the end of the probe and inserted transorally in a 78-year-old male who had previously undergone surgical removal of his right vocal fold for treatment of laryngeal cancer. The endoscopist used one hand to position the custom probe against the surgically medialized scar band that replaced the right vocal fold and used the other hand to position a transoral endoscope to record laryngeal high-speed videoendoscopy of the vibrating left vocal fold contacting the pressure probe. Visualization of the larynx during sustained phonation allowed the endoscopist to place the dual-sensor pressure probe such that the proximal sensor was positioned intraglottally and the distal sensor subglottally. The proximal pressure sensor was verified to be in the strike zone of vocal fold collision during phonation when the intraglottal pressure signal exhibited three characteristics: an impulsive peak at the start of the closed phase, a rounded peak during the open phase, and a minimum value around zero immediately preceding the impulsive peak of the subsequent phonatory cycle. Numerical voice production modeling was applied to validate model-based predictions of vocal fold collision pressure using kinematic vocal fold measures. The results successfully demonstrated feasibility of in vivo measurement of vocal fold collision pressure in an individual with a hemilaryngectomy, motivating ongoing data collection that is designed to aid in the development of vocal dose measures that incorporate vocal fold impact collision and stresses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Emiro J. Ibarra ◽  
Jesús A. Parra ◽  
Gabriel A. Alzamendi ◽  
Juan P. Cortés ◽  
Víctor M. Espinoza ◽  
...  

The ambulatory assessment of vocal function can be significantly enhanced by having access to physiologically based features that describe underlying pathophysiological mechanisms in individuals with voice disorders. This type of enhancement can improve methods for the prevention, diagnosis, and treatment of behaviorally based voice disorders. Unfortunately, the direct measurement of important vocal features such as subglottal pressure, vocal fold collision pressure, and laryngeal muscle activation is impractical in laboratory and ambulatory settings. In this study, we introduce a method to estimate these features during phonation from a neck-surface vibration signal through a framework that integrates a physiologically relevant model of voice production and machine learning tools. The signal from a neck-surface accelerometer is first processed using subglottal impedance-based inverse filtering to yield an estimate of the unsteady glottal airflow. Seven aerodynamic and acoustic features are extracted from the neck surface accelerometer and an optional microphone signal. A neural network architecture is selected to provide a mapping between the seven input features and subglottal pressure, vocal fold collision pressure, and cricothyroid and thyroarytenoid muscle activation. This non-linear mapping is trained solely with 13,000 Monte Carlo simulations of a voice production model that utilizes a symmetric triangular body-cover model of the vocal folds. The performance of the method was compared against laboratory data from synchronous recordings of oral airflow, intraoral pressure, microphone, and neck-surface vibration in 79 vocally healthy female participants uttering consecutive /pæ/ syllable strings at comfortable, loud, and soft levels. The mean absolute error and root-mean-square error for estimating the mean subglottal pressure were 191 Pa (1.95 cm H2O) and 243 Pa (2.48 cm H2O), respectively, which are comparable with previous studies but with the key advantage of not requiring subject-specific training and yielding more output measures. The validation of vocal fold collision pressure and laryngeal muscle activation was performed with synthetic values as reference. These initial results provide valuable insight for further vocal fold model refinement and constitute a proof of concept that the proposed machine learning method is a feasible option for providing physiologically relevant measures for laboratory and ambulatory assessment of vocal function.


2005 ◽  
Vol 44 (03) ◽  
pp. 384-391 ◽  
Author(s):  
N. Tayama ◽  
D. A. Berry ◽  
M. Döllinger

Summary Objectives: The purpose of this investigation was to use an excised human larynx to substantiate physical mechanisms of sustained vocal fold oscillation over a variety of phonatory conditions. During sustained, flow-induced oscillation, dynamical data was collected from the medial surface of the vocal fold. The method of Empirical Eigenfunctions was used to analyze the data and to probe physical mechanisms of sustained oscillation. Methods: Thirty microsutures were mounted on the medial margin of a human vocal fold. Across five distinct phonatory conditions, the vocal fold was set into oscillation and imaged with a high-speed digital imaging system. The position coordinates of the sutures were extracted from the images and converted into physical coordinates. Empirical Eigenfunctions were computed from the time-varying physical coordinates, and mechanisms of sustained oscillation were explored. Results: Using the method of Empirical Eigenfunctions, physical mechanisms of sustained vocal fold oscillation were substantiated. In particular, the essential dynamics of vocal fold vibration were captured by two dominant Empirical Eigenfunctions. The largest Eigenfunction primarily captured the alternating convergent/ divergent shape of the medial surface of the vocal fold, while the second largest Eigenfunction primarily captured the lateral vibrations of the vocal fold. Conclusions: The hemi-larynx setup yielded a view of the medial surface of the vocal folds, revealing the tissue vibrations which produced sound. Through the use of Empirical Eigenfunctions, the underlying modes of vibration were computed, disclosing physical mechanisms of sustained vocal fold oscillation. The investigation substantiated previous theoretical analyses and yielded significant data to help evaluate and refine computational models of vocal fold vibration.


Author(s):  
Matthias Echternach ◽  
Michael Döllinger ◽  
Marie Köberlein ◽  
Liudmila Kuranova ◽  
Donata Gellrich ◽  
...  

Abstract Introduction Vocal fold mass lesions can affect vocal fold oscillation patterns and therefore voice production. It has been previously observed that perturbation values from audio signals were lower with increased loudness. However, how much the oscillation patterns change with gradual alteration of loudness is not yet fully understood. Material and methods Eight patients with vocal fold mass lesions were asked to perform a glide from minimum to maximum loudness on the vowel /i/, ƒo of 125 Hz for male or 250 Hz for female voices. During phonation the subjects were simultaneously recorded with transnasal high speed videoendoscopy (HSV, 20,000 fps), electroglottography (EGG), and an audio recording. Based on the HSV material the Glottal Area Waveform (GAW) was segmented and GAW parameters were computed. Results The greatest vocal fold irregularities were observed at different values between minimum and maximum sound pressure level. There was a relevant discrepancy between the HSV and EGG derived open quotients. Furthermore, the EGG derived sample entropy and GAW values also evidenced different behavior. Conclusions The amount of vocal fold irregularity changes with varying loudness. Therefore, any evaluation of the voice should be performed under different loudness conditions. The discrepancy between EGG and GAW values appears to be much stronger in patients with vocal fold mass lesions than those with normal physiological conditions. Level of evidence 4.


1994 ◽  
Vol 37 (3) ◽  
pp. 510-521 ◽  
Author(s):  
Maureen B. Higgins ◽  
Arlene E. Carney ◽  
Laura Schulte

The purpose of this investigation was to study the impact of hearing loss on phonatory, velopharyngeal, and articulatory functioning using a comprehensive physiological approach. Electroglottograph (EGG), nasal/oral air flow, and intraoral air pressure signals were recorded simultaneously from adults with impaired and normal hearing as they produced syllables and words of varying physiological difficulty. The individuals with moderate-to-profound hearing loss had good to excellent oral communication skills. Intraoral pressure, nasal air flow, durations of lip, velum, and vocal fold articulations, estimated subglottal pressure, mean phonatory air flow, fundamental frequency, and EGG abduction quotient were compared between the two subject groups. Data from the subjects with hearing loss also were compared across aided and unaided conditions to investigate the influence of auditory feedback on speech motor control. The speakers with hearing loss had significantly higher intraoral pressures, subglottal pressures, laryngeal resistances, and fundamental frequencies than those with normal hearing. There was notable between-subject variability. All of the individuals with profound hearing loss had at least one speech/voice physiology measure that fell outside of the normal range, and most of the subjects demonstrated unique clusters of abnormal behaviors. Abnormal behaviors were more evident in the phonatory than articulatory or velopharyngeal systems and were generally consistent with vocal fold hyperconstriction. There was evidence from individual data that vocal fold posturing influenced articulatory timing. The results did not support the idea that the speech production skills of adults with moderate-to-profound hearing loss who are good oral communicators deteriorate when there are increased motoric demands on the velopharyngeal and phonatory mechanism. Although no significant differences were found between the aided and unaided conditions, 7 of 10 subjects showed the same direction of change for subglottal pressure, intraoral pressure, nasal air flow, and the duration of lip and vocal fold articulations. We conclude that physiological assessments provide important information about the speech/voice production abilities of individuals with moderate-to-profound hearing loss and are a valuable addition to standard assessment batteries.


Author(s):  
Joseph R. Nielson ◽  
David J. Daily ◽  
Tadd T. Truscott ◽  
Georg Luegmair ◽  
Michael Döllinger ◽  
...  

Synthetic aperture particle image velocimetry is used with an excised human vocal fold model to study the airflow between the vocal folds during voice production. A whole field, time-resolved, 3D description of the flow is presented over multiple cycles of vocal fold oscillations. The 3D flow data are synchronized with a 3D reconstruction of the superior surface of the vocal folds and with the subglottal pressure signal.


2006 ◽  
Author(s):  
M. Spencer ◽  
T. Siegmund ◽  
L. Mongeau

The understanding of the mechanics of the deformation behavior of vocal folds during flow-induced vibration is of central interest in studies of voice production. We have developed physical models of the vocal folds and connected such models to a flow supply system. The self-sustained oscillation of the vocal folds during phonation experiments is investigated using digital image correlation (DIC) techniques enabled through the use of a high-speed digital camera. A laser Doppler velocimeter was used to independently verify results from the DIC. The study reports on vibratory motion of the superior surface of the model vocal folds, and documents strain fields, and principal strains on that surface. From measured strains and the incompressibility assumption, the corresponding stress fields are computed. Strains on the vocal fold superior surface are quantified in dependence of varying subglottal pressures and flow rates.


2021 ◽  
Vol 11 (4) ◽  
pp. 1817
Author(s):  
Zheng Li ◽  
Azure Wilson ◽  
Lea Sayce ◽  
Amit Avhad ◽  
Bernard Rousseau ◽  
...  

We have developed a novel surgical/computational model for the investigation of unilat-eral vocal fold paralysis (UVFP) which will be used to inform future in silico approaches to improve surgical outcomes in type I thyroplasty. Healthy phonation (HP) was achieved using cricothyroid suture approximation on both sides of the larynx to generate symmetrical vocal fold closure. Following high-speed videoendoscopy (HSV) capture, sutures on the right side of the larynx were removed, partially releasing tension unilaterally and generating asymmetric vocal fold closure characteristic of UVFP (sUVFP condition). HSV revealed symmetric vibration in HP, while in sUVFP the sutured side demonstrated a higher frequency (10–11%). For the computational model, ex vivo magnetic resonance imaging (MRI) scans were captured at three configurations: non-approximated (NA), HP, and sUVFP. A finite-element method (FEM) model was built, in which cartilage displacements from the MRI images were used to prescribe the adduction, and the vocal fold deformation was simulated before the eigenmode calculation. The results showed that the frequency comparison between the two sides was consistent with observations from HSV. This alignment between the surgical and computational models supports the future application of these methods for the investigation of treatment for UVFP.


2021 ◽  
Vol 62 (2) ◽  
Author(s):  
Florian M. Heckmeier ◽  
Stefan Hayböck ◽  
Christian Breitsamter

Abstract The spatial and temporal resolution of a fast-response aerodynamic pressure probe (FRAP) is investigated in a benchmark flow of grid-generated turbulence. A grid with a mesh size of $$M=6.4$$ M = 6.4 mm is tested for two different free-stream velocities, hence, resulting in Reynolds numbers of $$Re_M= \{4300,12800\}$$ R e M = { 4300 , 12800 } . A thorough analysis of the applicability of the underlying assumptions with regard to turbulence isotropy and homogeneity is carried out. Taylor’s frozen turbulence hypothesis is assumed for the calculation of deducible flow quantities, like the turbulent kinetic energy or the dissipation rate. Furthermore, besides the examination of statistical quantities, velocity spectra of measurements downstream of the grid are quantified. Results of a small fast-response five-hole pressure probe equipped with piezo-resistive differential pressure sensors are compared to single-wire hot-wire constant temperature anemometry data for two different wire lengths. Estimates of temporal and spatial turbulent scales (e.g., Taylor micro scale and Kolmogorov length scale) show good agreement to data in the literature but are affected by filtering effects. Especially in the energy spectra, very high bandwidth content cannot be resolved by the FRAP, which is mainly due to bandwidth limits in the temporal calibration of the FRAP and the minimal resolution of the integrated sensors. Graphic abstract


2021 ◽  
Vol 9 (1) ◽  
pp. 67
Author(s):  
Hiroshi Takagi ◽  
Fumitaka Furukawa

Uncertainties inherent in gate-opening speeds are rarely studied in dam-break flow experiments due to the laborious experimental procedures required. For the stochastic analysis of these mechanisms, this study involved 290 flow tests performed in a dam-break flume via varying gate speeds between 0.20 and 2.50 m/s; four pressure sensors embedded in the flume bed recorded high-frequency bottom pressures. The obtained data were processed to determine the statistical relationships between gate speed and maximum pressure. The correlations between them were found to be particularly significant at the sensors nearest to the gate (Ch1) and farthest from the gate (Ch4), with a Pearson’s coefficient r of 0.671 and −0.524, respectively. The interquartile range (IQR) suggests that the statistical variability of maximum pressure is the largest at Ch1 and smallest at Ch4. When the gate is opened faster, a higher pressure with greater uncertainty occurs near the gate. However, both the pressure magnitude and the uncertainty decrease as the dam-break flow propagates downstream. The maximum pressure appears within long-period surge-pressure phases; however, instances considered as statistical outliers appear within short and impulsive pressure phases. A few unique phenomena, which could cause significant bottom pressure variability, were also identified through visual analyses using high-speed camera images. For example, an explosive water jet increases the vertical acceleration immediately after the gate is lifted, thereby retarding dam-break flow propagation. Owing to the existence of sidewalls, two edge waves were generated, which behaved similarly to ship wakes, causing a strong horizontal mixture of the water flow.


Sign in / Sign up

Export Citation Format

Share Document