scholarly journals Experiments of an IoT-based wireless sensor network for flood monitoring in Colima, Mexico

Author(s):  
O. Mendoza-Cano ◽  
R. Aquino-Santos ◽  
J. López-de la Cruz ◽  
R. M. Edwards ◽  
A. Khouakhi ◽  
...  

Abstract Urban flooding is one of the major issues in many parts of the world, and its management is often challenging. One of the challenges highlighted by the hydrology and related communities is the need for more open data and monitoring of floods in space and time. In this paper, we present the development phases and experiments of an Internet of Things (IoT)-based wireless sensor network for hydrometeorological data collection and flood monitoring for the urban area of Colima-Villa de Álvarez in Mexico. The network is designed to collect fluvial water level, soil moisture and weather parameters that are transferred to the server and to a web application in real-time using IoT Message Queuing Telemetry Transport protocol over 3G and Wi-Fi networks. The network is tested during three different events of tropical storms that occurred over the area of Colima during the 2019 tropical cyclones season. The results show the ability of the smart water network to collect real-time hydrometeorological information during extreme events associated with tropical storms. The technology used for data transmission and acquisition made it possible to collect information at critical times for the city. Additionally, the data collected provided essential information for implementing and calibrating hydrological models and hydraulic models to generate flood inundation maps and identify critical infrastructure.

Author(s):  
Nuhu B. K. ◽  
Arulogun O. T. ◽  
Adeyanju I. A. ◽  
Abdullahi I. M.

Riverine flood is a major disaster faced by most countries and has significant adverse effect on long term economic growth of affected regions and their environments. Several systems have previously employed different technologies to monitor riverine flood but are expensive with low accuracy and consumes high amount of energy. In this paper, we proposed an energy efficient and accurate flood monitoring system. The system leverages on Internet Protocol Version 6 over Low Power Wireless Personal Area Network (6loWPAN) technology to construct a Wireless Sensor Network (WSN) comprising of two XM1000 motes and a rule-base water level monitoring application. The motes were configured using NesC programming for flood monitoring with Basestation and water level sensing applications. The water level sensing mote samples and transmits real-time water level information to the Basestation mote which interfaces with a rule-based water level monitoring application. The application compares current water level with a predetermined threat level and alerts relevant agencies when flood is imminent via an email. The results obtained from the emulation of the developed system showed that, it achieved an accuracy of 95.3% in water level monitoring with a Mean Squared Error of 5.1. The power consumed in transmitting a packet of 2 bytes payload plus other overhead was 0.4µJ and 0.0396mJ with and without 6loWPAN configuration respectively.


2020 ◽  
Author(s):  
Lakshmi Narayana Thalluri ◽  
Jitendra Prasad Ayodhya ◽  
Yuva Raju Chava ◽  
Bhimeswara Anjaneya Prasad Tati

2018 ◽  
Vol 14 (01) ◽  
pp. 4
Author(s):  
Wang Weidong

To improve the efficiency of the remote monitoring system for logistics transportation, we proposed a remote monitoring system based on wireless sensor network and GPRS communication. The system can collect information from the wireless sensor network and transmit the information to the ZigBee interpreter. The monitoring system mainly includes the following parts: Car terminal, GPRS transmission network and monitoring center. Car terminal mainly consists by the Zigbee microcontroller and peripherals, wireless sensor nodes, RFID reader, GPRS wireless communication module composed of a micro-wireless monitoring network. The information collected by the sensor communicates through the GPRS and the monitoring center on the network coordinator, sends the collected information to the monitoring center, and the monitoring center realizes the information of the logistics vehicle in real time. The system has high applicability, meets the design requirements in the real-time acquisition and information transmission of the information of the logistics transport vehicles and goods, and realizes the function of remote monitoring.


2014 ◽  
Vol 513-517 ◽  
pp. 1915-1918
Author(s):  
Heng Wang ◽  
Bi Geng Zheng

As one of the freshest technologies nowadays, the development of Internet of Things is attracting more and more concerns. Internet of Things is able to connect all the items to Internet via information technology such as RFID and Wireless Sensor Network, in order to realize intelligent identification and management. It is supposed in Internet of Things environments, satisfactory services can be provided through any devices or any networks, whenever it is demanded. It makes that not only PC device but also other small devices with intelligence can be connected to the same network. As a result, It is much more convenient for people to obtain real-time information and then to take corresponding actions.


Water distribution system is a network that supplies water to all the consumers through different means. Proper means of providing water to houses without compromising in quantity and quality is always a challenge. As it is a huge network keeping track of the utilization is difficult for the utility. Hence through this project we come up with a solution to solve this issue. Current technologies like Low Power Wide Area Networks, LoRa and sensor deployment techniques have been in research and were also tested in few rural areas but issues due to hardware deployment and large scale real time implementation was a challenge hence through this system we aim to create and simulate a real time scenario to test a sensor network model that could be implemented in large scale further. This project aims in building a wireless sensor network model for a smart water distribution system. In this system there is bidirectional communication between the consumer and the utility. Each house has a meter through which the amount of water consumed is sent to the utility board. The data has two fields containing the house ID and the data (water consumed); it is being sent to the data collection unit (DCU) which in-turn sends it to the central server so that the consumption is monitored in real time. All this is simulated using NETSIM and MATLAB.


Sensors ◽  
2018 ◽  
Vol 18 (3) ◽  
pp. 820 ◽  
Author(s):  
Alessandro Pozzebon ◽  
Irene Cappelli ◽  
Alessandro Mecocci ◽  
Duccio Bertoni ◽  
Giovanni Sarti ◽  
...  

2013 ◽  
Vol 475-476 ◽  
pp. 127-131 ◽  
Author(s):  
Jing Jiang Song ◽  
Ying Li Zhu

With the development of agricultural modernization, agricultural environment protection, Wireless Sensor Networks are used in the field of environmental monitoring for modern agriculture, which brings a broad and bright application prospects. The paper presents a real-time monitoring system based ZigBee wireless sensor network and GPRS network. The system gives the hardware design of wireless sensor node and software implementations. The system design provided a guarantee to achieve accurate, remote and real-time monitoring agricultural environmental information.


Sign in / Sign up

Export Citation Format

Share Document