scholarly journals Effect of Spathiphyllum blandum on the removal of ibuprofen and conventional pollutants from polluted river water, in fully saturated constructed wetlands at mesocosm level

2020 ◽  
Vol 18 (2) ◽  
pp. 224-228
Author(s):  
Luis Sandoval ◽  
José Luis Marín-Muñíz ◽  
Jacel Adame-García ◽  
Gregorio Fernández-Lambert ◽  
Florentina Zurita

Abstract In this study, the effect of Spathiphyllum blandum on the removal of ibuprofen (IB) and conventional pollutants such as chemical oxygen demand (COD), total nitrogen (TN), ammonium (NH4+-N), total phosphorus (TP), and total suspended solids (TSS) is reported; this, through its use as an emergent vegetation in fully saturated (FS) constructed wetlands (CWs) at mesocosm level treating polluted river water. With the exception of TP and COD, it was found that for TN (12%), NH4+-N (11%), TSS (19%), and IB (23%), the removals in systems with vegetation were superior to systems without vegetation (p < 0.05). These findings demonstrate the importance of the species S. blandum, in particular, for the removal of ibuprofen, which is an anti-inflammatory drug commonly found in effluents of wastewater treatment plants. Thus, the results obtained provide information that can be used for the design of future efficient large-scale systems using a new ornamental species, mainly under tropical climatic conditions. This article has been made Open Access thanks to the generous support of a global network of libraries as part of the Knowledge Unlatched Select initiative.

2019 ◽  
Vol 79 (9) ◽  
pp. 1639-1647 ◽  
Author(s):  
Lu-ji Yu ◽  
Tao Chen ◽  
Yanhong Xu

Abstract Micro-polluted river water is characterized as having limited biodegradability, low carbon to nitrogen ratio and little organic carbon supply, all of which makes it hard to further purify. Two bench scale constructed wetlands (CWs) with a horizontal subsurface flow mode were set up in the laboratory to evaluate their feasibility and efficiency on denitrification with and without corn cobs as external carbon sources. Micro-polluted river water was used as feed solution. The CW without corn cobs substrates possessed a good performance in removing chemical oxygen demand (COD, <40 mg/L) and ammonia nitrogen (NH3-N, <0.65 mg/L), but less efficiency in removing total nitrogen (TN) and nitrate nitrogen (NO3-N). In marked contrast, the CW with 1% (w/w) corn cobs substrates as external carbon sources achieved a significant improvement in the removal efficiency of TN (increased from 34.2% to 71.9%) and NO3-N (increased from 19% to 71.9%). The incorporation of corn cobs substrates did not cause any obvious increase in the concentrations of COD and NH3-N in the effluent. This improvement in the denitrification efficiency was owing to the released organic carbon from corn cobs substrates, which facilitated the growth of abundant microbes on the surface and pores of the substrate. The open area of the used corn chips is larger than that of the pristine ones, and corn cobs can continue to provide a carbon fiber source for denitrification.


1999 ◽  
Vol 40 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Christoph Platzer

The paper presents a design for nitrogen removal in subsurface flow wetlands. The nitrification in the vertical-flow beds (VFBs) is clearly determined by the oxygen balance in the filter. Full nitrification can only be achieved when the oxygen balance is positive. For sizing purposes equations for the calculation of oxygen demand and oxygen input are given. Three possibilities to achieve sufficient soil aeration are presented and explained. For the denitrification two possibilities are presented. From technical wastewater treatment plants predenitrification is well known. Return rates up to 200% can be used without hydraulic problems for the VFBs. In cases of low C/N ratios an additional application of HFBs has to be used. The design can be carried out using a design of 1 g NO3-N/m2,d achieving a 65% removal in more than 90% of the cases. The paper discusses some of the equations presented internationally. The suitability of the use of k-values for the processes nitrification and denitrification is especially questioned.


2010 ◽  
Vol 113-116 ◽  
pp. 1189-1194
Author(s):  
Yong Ming Wu ◽  
Jin Bao Wan ◽  
Ji Hai Xiong ◽  
Shun Fa Wang ◽  
Ping Gu

A full-scale integrated system of the IOC-SBBR and CWs for the biological treatment of livestock wastewater was carried out in this study, the combined IOC-SBBR process had the removal rates of COD, NH4+-N, TN reached 96.5%, 89% and 81.1%, respectively. CWs were used for the further tertiary treatment of livestock wastewater, which the average removal rate of the NH4+-N and TN was 61.3% and 60.2%, the overall integrated system was superior to the direct anaerobic or aerobic process for the treatment of large-scale livestock wastewater, would provide the valuable design and operation for the livestock wastewater treatment plants.


2006 ◽  
Vol 76 (1) ◽  
pp. 90-97 ◽  
Author(s):  
X. Ruan ◽  
Y. Xue ◽  
J. Wu ◽  
L. Ni ◽  
M. Sun ◽  
...  

2012 ◽  
Vol 66 (11) ◽  
pp. 2328-2335 ◽  
Author(s):  
Xiang-Feng Huang ◽  
Xin Liu ◽  
Jia-Jia Shang ◽  
Yi Feng ◽  
Jia Liu ◽  
...  

Plant biomass is usually added to constructed wetlands (CW) to enhance denitrification. In this study, we investigated effects of different pretreatments on two common external plant carbon sources, cattail and reed litter. We determined the average ratio of chemical oxygen demand (COD) to total nitrogen (TN), designated as C/N, in water samples after addition of litter subjected to various pretreatments. The C/N in the water samples ranged from 4.8 to 6.4 after addition of NaOH-pretreated cattail litter, which was four to six times greater than that of water from the Yapu River and 3.84–39.15% higher than that of systems that received untreated cattail litter. The C/N of systems that received H2SO4-pretreated carbon sources varied from 1.7 to 3.6. These two methods resulted in TN and total phosphorus (TP) levels lower than those in river water. The C/N was 1.4–1.7 after addition of CH3COOH-pretreated reed litter, which was 34.87–53.83% higher than that of river water. The C/N was 2.5 in systems that received mild alkali/oxidation-pretreated reeds, which was 30.59% higher than that of systems that received non-pretreated reeds. The residue rates of cattail and reed litter subjected to various pretreatments were greater than 60%. Our results showed that NaOH, H2SO4, and mild alkali/oxidation pretreatments were useful to rapidly improve the C/N of river water and enhance denitrification.


2018 ◽  
Vol 19 (3) ◽  
pp. 967-977 ◽  
Author(s):  
Munazzam Jawad Shahid ◽  
Razia Tahseen ◽  
Muhammad Siddique ◽  
Shafaqat Ali ◽  
Samina Iqbal ◽  
...  

Abstract In this study, the potential of floating treatment wetlands (FTWs), inoculated with selected bacteria, to ameliorate polluted river water was evaluated. Floating cells were prepared by vegetating plants, Typha domingensis and Leptochloa fusca, on a floating mat. The plants were inoculated with three different pollutant-degrading rhizospheric and endophytic bacterial strains. Significantly greater decrease in chemical oxygen demand (COD), biochemical oxygen demand (BOD5) and total organic carbon (TOC) was observed in inoculated FTWs than in the wetlands without bacterial inoculation. However, a slight decrease in pH and EC was seen in most of the treatments. The total nitrogen (TN), nitrate and total phosphorus (TP) contents decreased to 1.77 mg/L, 0.80 mg/L and 0.60 mg/L, respectively. Additionally, the concentration of iron (Fe), nickel (Ni), manganese (Mn), lead (Pb), and chromium (Cr) in the water lowered to 0.41, 0.16, 0.10, 0.25, and 0.08 mg/L, respectively. Overall the performance of T. domingensis was significantly better than L. fusca. The treated effluents meet the water quality guidelines for irrigation and aquatic life. This study revealed that FTWs supplemented with selective bacteria are a promising approach for the restoration and management of polluted river water.


2011 ◽  
Vol 393-395 ◽  
pp. 1304-1307 ◽  
Author(s):  
En Shi ◽  
Zong Lian She ◽  
Tian Xie ◽  
Jian Wu ◽  
Xiao Hui Fu

The main purpose of this study was to treat organic pollutants, nitrogen and phosphorus in polluted river water by the use of constructed wetland (CW) systems. A laboratory experiment research was conducted on subsurface flow constructed wetland systems operated in vertical flow (VF) and horizontal flow (HF) mode. The systems were unplanted and hydraulic retention times were identically 2.7 days. The average removal efficiencies for HFCW and VFCW were NH+ 4-N 64.9% and 75.2%, NO- 3-N 92.3% and 40.1%, COD 97.5% and 90.1%, TP 94.6% and 96.2%, respectively. The removal of NH+ 4-N and NO- 3-N in the different CW units were in order of VFCW (drained) > VFCW (flooded) > HFCW and HFCW > VFCW (flooded) > VFCW (drained), respectively. When the water level in the VFCW was changed, an obvious fluctuation of the effluent NH+ 4-N and NO- 3-N concentrations was observed.


Sign in / Sign up

Export Citation Format

Share Document