Technologies for urban water recycling

2008 ◽  
Vol 3 (2) ◽  
Author(s):  
Marc Pidou ◽  
Fayyaz Ali ◽  
Ronnie Frazer Williams ◽  
Paul Jeffrey ◽  
Tom Stephenson ◽  
...  

This paper presents a comparative analysis of 5 systems for the treatment of greywater for reuse. The systems investigated were a biological system: a membrane bioreactor (MBR), a chemical system: a membrane chemical reactor (MCR) and three constructed wetlands: vertical (VFRB) and horizontal (HFRB) flow reed beds and a green roof (GROW). The results revealed that the GROW and the HFRB achieved a limited treatment of the greywater. Alternatively, the MBR, the MCR and the VFRB achieved a good general treatment of the greywater. However, the MBR and MCR alter more significantly the solids and microbial fractions. Overall, the MBR was found to be the most suitable technology for greywater recycling due to its robustness. Indeed, the MBR constantly achieved an excellent treatment of the high strength greywater.

1999 ◽  
Vol 40 (3) ◽  
pp. 309-315 ◽  
Author(s):  
Jonathan K. Rash ◽  
Sarah K. Liehr

Three series of tracer studies were performed on three constructed wetlands at the New Hanover County Landfill near Wilmington, North Carolina, USA. One vegetated free water surface wetland (FWS-R), one vegetated subsurface flow wetland (SSF-R), and one unvegetated control subsurface flow wetland (SSF-C) were studied. A conservative tracer, lithium chloride, was used to study the chemical reactor behavior of these wetlands under normal operating conditions. Results indicated that short-circuiting is quite common in SSF wetlands, while FWS wetlands are well-mixed and not as subject to short-circuiting. These results were obtained from and reinforced with tracer measurements at interior points in these wetlands, analysis of residence time distributions from two different formulations, and the construction of residence volume distributions. The short-circuiting in the SSF wetlands can be attributed to the following: (1) Vertical mixing is inhibited by a combination of physical barriers and density gradients caused by rainfall and runoff dilution of the upper layer; and (2) Leachate is drawn from the bottom of the wetland, causing it to further prefer a flow path along the bottom.


Author(s):  
Jitendra Rajpoot

International Allelopathy Society has redefined Allelopathy as any process involving secondary metabolities produced by plants, algae, bacteria, fungi and viruses that influences the growth and development of agricultural and biological system; a study of the functions of secondary metabolities, their significance in biological organization, their evolutionary origin and elucidation of the mechanisms involving plant-plant, plant-microorganisms, plant-virus, plant-insect, plant-soil-plant interactions.


2003 ◽  
Vol 48 (1) ◽  
pp. 191-198 ◽  
Author(s):  
T.K. Chen ◽  
C.H. Ni ◽  
J.N. Chen ◽  
J. Lin

The membrane bioreactor (MBR) system has become more and more attractive in the field of wastewater treatment. It is particularly attractive in situations where long solids retention times are required, such as nitrifying bacteria, and physical retention critical to achieving more efficiency for biological degradation of pollutant. Although it is a new technology, the MBR process has been applied for industrial wastewater treatment for only the past decade. The opto-electronic industry, developed very fast over the past decade in the world, is high technology manufacturing. The treatment of the opto-electronic industrial wastewater containing a significant quantity of organic nitrogen compounds with a ratio over 95% in organic nitrogen (Org-N) to total nitrogen (T-N) is very difficult to meet the discharge limits. This research is mainly to discuss the treatment capacity of high-strength organic nitrogen wastewater, and to investigate the capabilities of the MBR process. A 5 m3/day capacity of MBR pilot plant consisted of anoxic, aerobic and membrane bioreactor was installed for evaluation. The operation was continued for 150 days. Over the whole experimental period, a satisfactory organic removal performance was achieved. The COD could be removed with an average of over 94.5%. For TOC and BOD5 items, the average removal efficiencies were 96.3 and 97.6%, respectively. The nitrification and denitrification was also successfully achieved. Furthermore, the effluent did not contain any suspended solids. Only a small concentration of ammonia nitrogen was found in the effluent. The stable effluent quality and satisfactory removal performance mentioned above were ensured by the efficient interception performance of the membrane device incorporated within the biological reactor. The MBR system shows promise as a means of treating very high organic nitrogen wastewater without dilution. The effluent of TKN, NOx-N and COD can fall below 20 mg/L, 30 mg/L and 50 mg/L.


Sign in / Sign up

Export Citation Format

Share Document