scholarly journals Fouling membrane in an anaerobic membrane bioreactor treating municipal wastewater

2017 ◽  
Vol 12 (2) ◽  
pp. 314-321 ◽  
Author(s):  
A. Cerón-Vivas ◽  
A. Noyola

An anaerobic membrane reactor (AnMBR) treating municipal wastewater was evaluated. The experiments were performed using a pilot-scale up-flow anaerobic sludge blanket reactor with a submerged tubular ultrafiltration membrane at a hydraulic retention time of 8 hours. The system worked at an intermittent filtration mode (4 min on/1 min off) with and without nitrogen gas bubbling during the relaxation time (IF4NP and IF4P, respectively). The chemical oxygen demand (COD) removal achieved by the AnMBR was 68.6% and 87.9% for IF4P and IF4NP. Nitrogen bubbling also improved the filtration performance, as the elapsed time to reach 40 kPa for IF4NP and IF4P were 443 and 108 hours, respectively. Results show that intermittent filtration combined with nitrogen bubbling during the period of relaxation was an effective operation strategy in order to minimize membrane fouling and to increase COD removal.

2012 ◽  
Vol 518-523 ◽  
pp. 2625-2630 ◽  
Author(s):  
Ya Dong Guo ◽  
Cui Ting Fu ◽  
Guo Rong Liu ◽  
Chun Shuang Liu

A pilot-scale test was conducted with an up-flow anaerobic sludge blanket (UASB) treating pharmaceutical wastewater containing berberine. The aim of this study was to investigate the performance of UASB in the condition of a high chemical oxygen demand (COD) loading rate from 4.64 to 8.68 kg/m3d and a wide berberine concentration from 254 to 536 mg/L, in order to provide a reference for treating the similar pharmaceutical wastewater containing berberine. The results demonstrated that the UASB average percentage reduction in COD and berberine 68.14% and 57.39%, respectively. Granular sludge was formed during this process. In addition, a model, built on the back propagation neural network (BPNN) theory and linear regression techniques was developed for the simulation of the UASB system performance in the biodegradation of pharmaceutical wastewater containing berberine. The average errors of COD and berberine were -0.55% and 0.24%, respectively. The results indicated that this model built on the BPNN theory was well-fitted to the detected data, and was able to simulate and predict the removal of COD and berberine by UASB reactor.


2004 ◽  
Vol 31 (3) ◽  
pp. 420-431 ◽  
Author(s):  
S K Patidar ◽  
Vinod Tare

The effect of micro-nutrients, such as Fe, Ni, Zn, Co, and Mo, on anaerobic degradation of sulfate laden organics was investigated using bench-scale models of upflow anaerobic sludge blanket (UASB) reactor, anaerobic baffled reactor (ABR), and hybrid anaerobic baffled reactor (HABR), operating in varying conditions in ten phases (organic loading of 1.9–5.75 kg COD/(m3·d), sulfate loading of 0.54–1.88 kg SO42–/(m3·d), chemical oxygen demand (COD):SO42–ratio of 2.0–8.6). In the initial phase, no nutrient limitation was observed with COD removal of more than 94% in all three systems. Subsequently, increase in sulfate loading resulted in Ni and Co limitation and their supplementation restored COD removal in UASB system. However, baffled systems did not recover because of severe inhibition by sulfide. Results indicate that precipitation of nutrients could seriously deteriorate process performance, leading to failure even before sulfide concentration attains toxic level. The limitation of Fe coupled with high sulfate loading (1.88 kg SO42–/(m3·d)) resulted in growth of low-density, fragile, hollow, and granular biomass in UASB that washed out and caused process instability. Supplementation of Fe with other nutrients stabilized UASB process and also improved COD removal.Key words: anaerobic degradation, nutrients, UASB, ABR, HABR, sulfide toxicity, sulfate laden organics.


2002 ◽  
Vol 45 (10) ◽  
pp. 243-248 ◽  
Author(s):  
L. Seghezzo ◽  
R.G. Guerra ◽  
S.M. González ◽  
A.P. Trupiano ◽  
M.E. Figueroa ◽  
...  

The performance of a sewage treatment system consisting of a settler followed by an Upflow Anaerobic Sludge Bed (UASB) reactor is described. Mean ambient and sewage temperature were 16.5 and 21.6°C, respectively. Total Chemical Oxygen Demand (CODt) concentration averaged 224.2 and 152.6 mg/L, for raw and settled sewage, respectively. The effluent concentration was 68.5 mgCODt/L. Total and suspended COD removal efficiencies of approximately 70 and 80%, respectively, have been observed in the system at a mean Hydraulic Retention Time (HRT) of 2 + 5 h. Maximum COD removal efficiency was achieved in the UASB reactor when upflow velocity (Vup) was 0.43 m/h (HRT = 6 h). Mean Specific Methanogenic Activity (SMA) and Volatile Suspended Solids (VSS) concentration in the granular sludge bed were 0.11 gCOD-CH4/gVSS.d and 30.0 gVSS/Lsludge, respectively. SMA was inversely related to VSS concentration, and both parameters varied along the sludge bed height. The Solids Retention Time (SRT) in the reactor was 450 days. Sludge characteristics have not been affected by changes of up to one month in Vup in the range 0.28–0.85 m/h (HRT 3–9 h). This system or two UASB reactors in series could be an alternative for sewage treatment under moderate temperature conditions.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 299-305 ◽  
Author(s):  
R.C. Leitão ◽  
J.A. Silva-Filho ◽  
W. Sanders ◽  
A.C. van Haandel ◽  
G. Zeeman ◽  
...  

In this investigation, the performance of Upflow Anaerobic Sludge Blanket (UASB) reactors treating municipal wastewater was evaluated on the basis of: (i) COD removal efficiency, (ii) effluent variability, and (iii) pH stability. The experiments were performed using 8 pilot-scale UASB reactors (120 L) from which some of them were operated with different influent COD (CODInf ranging from 92 to 816 mg/L) and some at different hydraulic retention time (HRT ranging from 1 to 6 h). The results show that decreasing the CODInf, or lowering the HRT, leads to decreased efficiencies and increased effluent variability. During this experiment, the reactors could treat efficiently sewage with concentration as low as 200 mg COD/L. They could also be operated satisfactorily at an HRT as low as 2 hours, without problems of operational stability. The maximum COD removal efficiency can be achieved at CODInf exceeding 300 mg/L and HRT of 6 h.


2001 ◽  
Vol 43 (8) ◽  
pp. 91-98 ◽  
Author(s):  
M. A. P. Reali ◽  
J. R. Campos ◽  
R. G. Penetra

This paper presents the results of a study performed with a lab-scale batch DAF unit fed with previously coagulated (with FeCl3 or cationic polymer) effluent from a pilot scale up-flow anaerobic sludge blanket (UASB) reactor treating domestic sewage. The adequate coagulation/flocculation conditions – chemical dosage, time (Tf) and mean velocity gradient (Gf) in the flocculation step – and air requirements for flotation process were investigated. Best results were achieved for 65 mg.l−1 of FeCl3 at Tf around 15 min and Gf of 80 s−1. In the assays where only polymer was applied, 7 mg.l−1 of cationic polymer dosage gave optimum removals with Tf around 15 min and Gf of 30 s−1. Air requirements ranged from 9.5 to 19.0 g of air.m−1 wastewater. Best TSS (95% and residual of 2 mg.l−1), COD (85% and residual of 20 mg.l−1) and total phosphate (95% and residual of 0.6 mg.l−1) removals were obtained when applying FeCl3, although the use of cationic polymer also produced good level of TSS (74% and residual of14 mg.l−1) and COD (75% and residual of 45 mg.l−1) removals. For the UASB-DAF (batch) system and FeCl3, global efficiencies would be 97.2% for COD, 97.9% for phosphate and 98.9% for TSS.


2009 ◽  
Vol 59 (11) ◽  
pp. 2265-2272 ◽  
Author(s):  
S. Satyanarayan ◽  
A. Karambe ◽  
A. P. Vanerkar

Herbal pharmaceutical industry has grown tremendously in the last few decades. As such, literature on the treatment of this wastewater is scarce. Water pollution control problems in the developing countries need to be solved through application of cost effective aerobic/anaerobic biological systems. One such system—the upflow anaerobic sludge blanket (UASB) process which is known to be cost effective and where by-product recovery was also feasible was applied for treatment of a high strength wastewater for a period of six months in a pilot scale upflow anaerobic sludge blanket (UASB) reactor with a capacity of 27.44 m3. Studies were carried out at various organic loading rates varying between 6.26 and 10.33 kg COD/m3/day and hydraulic retention time (HRT) fluctuating between 33 and 43 hours. This resulted in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and suspended solids (SS) removal in the range of 86.2%–91.6%, 90.0%–95.2% and 62.6%–68.0% respectively. The biogas production varied between 0.32–0.47 m3/kg COD added. Sludge from different heights of UASB reactor was collected and subjected to scanning electron microscopy (SEM). The results indicated good granulation with efficient UASB reactor performance.


2015 ◽  
Vol 21 (2) ◽  
pp. 229-237 ◽  
Author(s):  
Nazila Tehrani ◽  
Ghasem Najafpour ◽  
Mostafa Rahimnejad ◽  
Hossein Attar

Among various wastewater treatment technologies, biological wastewater treatment appears to be the most promising method. A pilot scale of hybrid anaerobic bioreactor was fabricated and used for the whey wastewater treatment. The top and bottom of the hybrid bioreactor known as up flow anaerobic sludge fixed film (UASFF); was a combination of up flow anaerobic sludge blanket (UASB) and up flow anaerobic fixed film reactor (UAFF), respectively. The effects of operating parameters such as temperature and hydraulic retention time (HRT) on chemical oxygen demand (COD) removal and biogas production in the hybrid bioreactor were investigated. Treatability of the samples at various HRTs of 12, 24, 36 and 48 hours was evaluated in the fabricated bioreactor. The desired conditions for COD removal such as HRT of 48 hours and operation temperature of 40 ?C were obtained. The maximum COD removal and biogas production were 80% and 2.40 (L/d), respectively. Kinetic models of Riccati, Monod and Verhalst were also evaluated for the living microorganisms in the treatment process. Among the above models, Riccati model was the best growth model fitted with the experimental data with R2 of about 0.99.


1999 ◽  
Vol 40 (8) ◽  
pp. 237-244 ◽  
Author(s):  
A. Puñal ◽  
A. Lorenzo ◽  
E. Roca ◽  
C. Hernández ◽  
J. M. Lema

The operation of an industrial pilot scale treating wastewater from a fibreboard-processing factory was monitored by an advanced system. The plant, an anaerobic hybrid UASB-UAF bioreactor (Upflow Anaerobic Sludge Blanket-Upflow Anaerobic Filter), was equipped with the following measurement devices: biogas flow-meter, feed and recycling flow-meters, thermometer Pt-100, biogas analyser (CH4 and CO), Hydrogen analyser and pH-meter. Other parameters such as alkalinity, Chemical Oxygen Demand (COD) and Volatile Fatty Acids (VFA) were determined off-line. All the on-line sensor measurements were monitored, through a PLC (Programmable Logic Controller), which indicated about the plant failures, including the measuring devices (giving messages or alarms to the operator) and provided the set points for the PLC. The pilot plant was started-up at an initial Organic Loading Rate (OLR) of 2 kg COD/m3.d (Hydraulic Retention Time (HRT) 5 days and 10 kg COD/m3), this value increasing up to 10 kg COD/m3.d by decreasing HRT to 1 day. The behaviour of the bioreactor during start-up and steady state operation was studied. After that, an experiment was performed to analyse the response of the bioreactor to an organic overload. From the results, different variables were evaluated as useful control parameters. Monitoring of CO concentration did not permit the prediction of destabilisation of the bioreactor. However, H2 concentration is quite a sensitive variable, which must be analysed together with other parameters such as methane composition or gas flow-rate. Besides, alkalinity is easy to measure and provides immediate information about the state of the plant, as was shown through the off-line measurements.


2011 ◽  
Vol 64 (10) ◽  
pp. 1959-1966 ◽  
Author(s):  
K. Syutsubo ◽  
W. Yoochatchaval ◽  
I. Tsushima ◽  
N. Araki ◽  
K. Kubota ◽  
...  

In this study, continuous operation of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor for sewage treatment was conducted for 630 days to investigate the physical and microbial characteristics of the retained sludge. The UASB reactor with a working volume of 20.2 m3 was operated at ambient temperature (16–29 °C) and seeded with digested sludge. After 180 days of operation, when the sewage temperature had dropped to 20 °C or lower, the removal efficiency of both total suspended solids (TSS) and total biochemical oxygen demand (BOD) deteriorated due to washout of retained sludge. At low temperature, the cellulose concentration of the UASB sludge increased owing to the rate limitation of the hydrolytic reaction of suspended solids in the sewage. However, after an improvement in sludge retention (settleability and concentration) in the UASB reactor, the process performance stabilized and gave sufficient results (68% of TSS removal, 75% of total BOD removal) at an hydraulic retention time (HRT) of 9.7 h. The methanogenic activity of the retained sludge significantly increased after day 246 due to the accumulation of Methanosaeta and Methanobacterium following the improvement in sludge retention in the UASB reactor. Acid-forming bacteria from phylum Bacteroidetes were detected at high frequency; thus, these bacteria may have an important role in suspended solids degradation.


2016 ◽  
Vol 73 (8) ◽  
pp. 1777-1784 ◽  
Author(s):  
D. Tanikawa ◽  
K. Syutsubo ◽  
M. Hatamoto ◽  
M. Fukuda ◽  
M. Takahashi ◽  
...  

A pilot-scale experiment of natural rubber processing wastewater treatment was conducted using a combination system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) and a down-flow hanging sponge (DHS) reactor for more than 10 months. The system achieved a chemical oxygen demand (COD) removal efficiency of 95.7% ± 1.3% at an organic loading rate of 0.8 kgCOD/(m3.d). Bacterial activity measurement of retained sludge from the UASB showed that sulfate-reducing bacteria (SRB), especially hydrogen-utilizing SRB, possessed high activity compared with methane-producing bacteria (MPB). Conversely, the acetate-utilizing activity of MPB was superior to SRB in the second stage of the reactor. The two-stage UASB–DHS system can reduce power consumption by 95% and excess sludge by 98%. In addition, it is possible to prevent emissions of greenhouse gases (GHG), such as methane, using this system. Furthermore, recovered methane from the two-stage UASB can completely cover the electricity needs for the operation of the two-stage UASB–DHS system, accounting for approximately 15% of the electricity used in the natural rubber manufacturing process.


Sign in / Sign up

Export Citation Format

Share Document