scholarly journals Combined compact anaerobic reactors and lamella settlers for decentralized sewage treatment

Author(s):  
Adriane Dias da Silva Lisboa ◽  
Lucas Achaval Silva ◽  
Yovanka Pérez Ginoris ◽  
Marco Antonio Almeida de Souza

Abstract This work presents a compact plant's development and performance evaluation for the decentralized treatment of domestic sewage. The plant was conceived and installed in a house with four residents in Vicente Pires, Federal District, Brazil. Its purpose was to remove organic matter and solids using a low-cost biological treatment process that was simple to operate. The plant was essentially anaerobic, composed of an up-flow anaerobic reactor and an anaerobic filter, both associated with lamella settlers. It was operated under real conditions and monitored for nineteen months, with removal efficiencies (calculated over the medians) of 81% for COD, 83% for BOD, 51% for Total Solids, 55% for Total Volatile Solids, 87% for Total Suspended Solids, and 100% for Settleable Solids. The plant performed adequately, with no clogging between the plates of the lamella settlers or no offensive odours, and limited amounts of sludge and scum.

2014 ◽  
Vol 953-954 ◽  
pp. 300-303 ◽  
Author(s):  
Fang Yin ◽  
Wu Di Zhang ◽  
Jing Liu ◽  
Hong Yang

The essence of the two phase anaerobic biological treatment process is to place acid bacteria and methane-producing bacteria in two reactors respectively, where it can provide the optimal conditions for their growth and metabolism, allowing them to live up to their maximal activity, which greatly improve processing capacity and efficiency compared to a single-phase anaerobic digestion. The paper start with the two phase anaerobic digestion process, in order to discuss the development direction of high efficient anaerobic digestion system.


2021 ◽  
Vol 21 (7) ◽  
pp. 3882-3886
Author(s):  
Yong-Wook Jung ◽  
Jong Kyu Kim

In this study, nano-sized low cost titanium dioxide (TFS) was prepared using sludge from sewage treatment and performance was verified. To remove air pollutants, the photocatalytic degradation of methylene blue and efflorescence characteristics is assessed according to the mixing ratio of the nano-sized TFS by applying them to concrete sidewalk blocks. The photocatalytic degradation performance of concrete sidewalk blocks shows that the methylene blue removal rate of specimens containing 2.5%, 5%, and 10% of nano-sized TFS is 29%, 27%, and 38%, respectively. When the nano-sized TFS is mingled on the surface of the sidewalk block, the performance of anti-corrosion and antifouling showed excellency mainly due to the moisture blocking derived by the antifouling function of photocatalysts.


2018 ◽  
Vol 33 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Long Liang ◽  
Ying Qiao Shi ◽  
Guigan Fang ◽  
Aixiang Pan ◽  
Qinwen Tian ◽  
...  

1994 ◽  
Vol 29 (9) ◽  
pp. 29-37 ◽  
Author(s):  
A. Brenner ◽  
S. Belkin ◽  
A. Abeliovich

A biological treatment process has been suggested as the main treatment stage for a high (organic) strength industrial wastewater stream, discharged by several chemical industries within a large industrial park. Treatability studies have indicated that the wastes contain a fraction of toxic and non-biodegradable organic matter, which limits the implementation of a conventional biological treatment process for the combined wastewater stream. Therefore, an in-plant control program including waste segregation and process-specific pretreatments is proposed. A protocol that enables selection of waste streams amenable to biological treatment and identification of problematic streams requiring pretreatment is presented and demonstrated. It includes simplified laboratory procedures used for chemical and toxicological characterization of source streams originating in various processes. The results can be used for the development of a pretreatment program for problematic waste streams, based upon local small-scale solutions.


Sign in / Sign up

Export Citation Format

Share Document