Disinfection By-Products (DBPs) in Drinking Water from Eight Systems Using Chlorine Dioxide

2008 ◽  
Vol 43 (1) ◽  
pp. 11-22 ◽  
Author(s):  
Rocio Aranda Rodriguez ◽  
Boniface Koudjonou ◽  
Brian Jay ◽  
Guy L. LeBel ◽  
Frank M. Benoit

Abstract A study was initiated to determine the presence of organic disinfection by-products (DBPs) in drinking water treated with chlorine dioxide (ClO2). One potential advantage for the use of ClO2 as a disinfectant is the reduced formation of organic DBPs. Generally, water treated with ClO2 produces chlorite and chlorate ions, but there is limited information regarding the presence of halogenated organic DBPs. Eight systems that use chlorine dioxide as part of the water disinfection process were investigated. All systems in this study applied chlorine as a primary or secondary disinfectant in addition to ClO2. To evaluate seasonal and spatial variations, water samples were collected during cold water (February to March 2003) and warm water (July to August 2003) months at five sites for each system: raw water (R, before treatment), treated water (T, after treatment but before distribution), and three points along the same distribution line (D1, D2, D3). Sampling and analysis were conducted according to established protocols. A suite of 27 organic DBPs including haloacetic acids (HAA), trihalomethanes (THM), haloacetonitriles (HAN), haloketones, haloacetaldehydes (HA), chloropicrin, and cyanogen chloride were examined. In addition, the concentration of oxyhalides (chlorite and chlorate ions) and auxiliary parameters were also determined. Chlorite was found in treated (T) and distributed (Dx) waters. The chlorite ion levels decreased along the distribution system (T > D1 > D2 > D3). At T sites, the levels ranged from 10 to 870 µg/L (winter), and from 300 to 1,600 µg/L (summer). Chlorite was not found in treated or distributed water in the one system that used ozone. Chlorate ion levels ranged from 20 to 310 µg/L (winter), and 80 to 318 µg/L (summer). Chlorate levels remained relatively constant throughout the distribution system. THM and eight HAA (HAA8) accounted for approximately 85% of the total DBPs (wt/wt) analyzed, followed by total HA (up to 7%) and HAN (3%). THM in distributed water were found at concentrations between 1.8 and 30.6 µg/L (winter), and 3.3 and 93.6 µg/L (summer). For HAA8, the levels ranged from 13 to 52 µg/L (winter), and 16 to 111 µg/L (summer). Chloral hydrate ranged from 0.2 to 5.2 µg/L (winter), and 0.4 to 12.2 µg/L (summer). The temporal and spatial variations observed in previous studies were confirmed in the current study as well.

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Nusa Idaman Said

Water disinfection means the removal, deactivation or killing of pathogenic microorganisms. Microorganisms are destroyed or deactivated, resulting in termination of growth and reproduction. When microorganisms are not removed from drinking water, drinking water usage will cause people to fall ill. Chemical inactivation of microbiological contamination in natural or untreated water is usually one of the final steps to reduce pathogenic microorganisms in drinking water. Combinations of water purification steps (oxidation, coagulation, settling, disinfection, and filtration) cause (drinking) water to be safe after production. As an extra measure many countries apply a second disinfection step at the end of the water purification process, in order to protect the water from microbiological contamination in the water distribution system. Usually one uses a different kind of disinfectant from the one earlier in the process, during this disinfection process. The secondary disinfection makes sure that bacteria will not multiply in the water during distribution. This paper describes several technique of disinfection process for drinking water treatment. Disinfection can be attained by means of physical or chemical disinfectants. The agents also remove organic contaminants from water, which serve as nutrients or shelters for microorganisms. Disinfectants should not only kill microorganisms. Disinfectants must also have a residual effect, which means that they remain active in the water after disinfection. For chemical disinfection of water the following disinfectants can be used such as Chlorine (Cl2),  Hypo chlorite (OCl-), Chloramines, Chlorine dioxide (ClO2), Ozone (O3), Hydrogen peroxide etch. For physical disinfection of water the following disinfectants can be used is Ultraviolet light (UV). Every technique has its specific advantages and and disadvantages its own application area sucs as environmentally friendly, disinfection byproducts, effectivity, investment, operational costs etc. Kata Kunci : Disinfeksi, bakteria, virus, air minum, khlor, hip khlorit, khloramine, khlor dioksida, ozon, UV.


2013 ◽  
Vol 848 ◽  
pp. 255-258 ◽  
Author(s):  
Yu Zhong Guo ◽  
Yan Zhen Yu ◽  
Ming Li ◽  
Guang Yong Yan

By the reason of strong responses activity and oxidation ability, Chlorine dioxide as oxidant and disinfectant has been applied to peroxidation and disinfection more and more widely.In this paper, it give an account of the preparation of chlorine dioxide, as oxidants to raw water pretreatment, used in filter water disinfection ,the detection technology of chlorine dioxide and disinfection by-products, the water quality standards formulated by domestic and overseas chlorine dioxide in using chlorine dioxide, and summarized progress on drinking water treatment with chlorine dioxide .


2006 ◽  
Vol 6 (2) ◽  
pp. 209-214
Author(s):  
J. Kriš ◽  
K. Munka ◽  
E. Büchlerová ◽  
M. Karácsonyová ◽  
L. Gajdoš

In a process of water disinfection it is necessary to distinguish between primary disinfection focused on removal or inactivation of microbiological contaminants from raw water, and secondary disinfection focused on maintenance of residual concentration of the disinfector in distribution system. Current practice related to disinfection follows two approaches. The paper presents results from a stage task solution “Research of physical-chemical changes in water quality during its distribution” at the Nová Bystrica-Čadca-Žilina long distance water supply system (LDWSS) focused on the presence of disinfection by-products by using chlorine dioxide.


2010 ◽  
Vol 113-116 ◽  
pp. 744-749
Author(s):  
Xing Bin Sun ◽  
Fu Yi Cui ◽  
Zhao Chao Hou ◽  
Lin Meng

Chironomus kiiensis larvae which cannot be exterminated by conventional disinfection process propagates prolifically in eutrophic water body, and it therefore turns to be a potential problem encountered in drinking water quality. In order to tackle this problem, a pilot-scale study of removal effect on Chironomus kiiensis larvae with chlorine dioxide in a waterworks is performed. The experiment results showed that Chironomus kiiensis larvae can be effectively removed from water by 0.55 mg/L chlorine dioxide pre-oxidation combined with the conventional drinking water treatment process. Higher oxidizability and molecular state of chlorine dioxide in water is the key to the inactivation of Chironomus kiiensis larvae. The chlorite, disinfection by-products (DBPs) of chlorine dioxide, is stable at 0.217 mg/L, which is lower than that critical value of the WHO. Ames test revealed that the mutagenicity was reduced by chlorine dioxide with respect to prechlorine. The propagation of Chironomus kiiensis larvae can be inactivated effectively and safely by chlorine dioxide pre-oxidation.


2012 ◽  
Vol 12 (6) ◽  
pp. 829-836 ◽  
Author(s):  
Slaven Dobrović ◽  
Hrvoje Juretić ◽  
Davor Ljubas ◽  
Ivana Vinković Vrček ◽  
Maja Zebić Avdičević ◽  
...  

This study was conducted to examine the genotoxicity and the influence of silver nanoparticles (AgNPs) contamination when drinking water is exposed to five different disinfection treatments: chlorine, chlorine dioxide, ozone, ozone/chlorine and ozone/chlorine dioxide. Experiments were conducted with water samples of different chemical composition, from three water supply systems in Croatia. AgNPs are of interest because of their use as an antimicrobial in numerous commercial products, and as a drinking water disinfection agent. To examine possible effects of AgNP contamination, the disinfection treatments were repeated with AgNPs in the water samples. AgNP contamination generally caused a decrease in the level of trihalomethanes by up to 59%. Influence of AgNPs on bromide ion incorporation into disinfection by-products (DBPs) was also examined. The most obvious example was the Osi water where ozonation step prior to chlorination increased the bromine incorporation factor from 0.156 to 0.339, while addition of AgNPs limited the increase to 0.249. Also, AgNP presence in almost all disinfection treatments increased dicarbonyl disinfection by-products. All treated waters were tested for genotoxicity using the comet assay and showed similar genotoxic potential. The results are preliminary, but could provide a basis for further studies evaluating the environmental impact of AgNPs in natural aquatic systems.


2012 ◽  
Vol 461 ◽  
pp. 497-500
Author(s):  
Deng Ling Jiang ◽  
Bo Wen Chen ◽  
Guo Wei Ni

Chlorine dioxide was applied to drinking water for reducing the quantity of organic pollutants such as chloroform and the taste and odor problems. A modified mode for operation in tap water plant was proposed following an investigation of the reaction mechanism by which ClO2 reacts with aquatic organic materials. By using such techniques, by-products such as chlorite and chlorate were effectively minimized and high quality drinking water was produced with reduced production cost of water treatment.


2000 ◽  
pp. 95-102 ◽  
Author(s):  
S. D. Richardson ◽  
A. D. Thruston ◽  
T. V. Caughran ◽  
P. H. Chen ◽  
T. W. Collette ◽  
...  

Author(s):  
Susan D. Richardson ◽  
Tashia V. Caughran ◽  
Alfred D. Thruston ◽  
Timothy W. Collette ◽  
Kathleen M. Schenck ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document