Decolorisation of natural organic matter by Phanerochaete chrysosporium: the effect of environmental conditions

2004 ◽  
Vol 4 (4) ◽  
pp. 175-182 ◽  
Author(s):  
K. Rojek ◽  
F.A. Roddick ◽  
A. Parkinson

Phanerochaete chrysosporium was shown to rapidly decolorise a solution of natural organic matter (NOM). The effect of various parameters such as carbon and nitrogen content, pH, ionic strength, NOM concentration and addition of Mn2+ on the colour removal process was investigated. The rapid decolorisation was related to fungal growth and biosorption rather than biodegradation as neither carbon nor nitrogen limitation, nor Mn2+ addition, triggered the decolorisation process. Low pH (pH 3) and increased ionic strength (up to 50 g L‒1 added NaCl) led to greater specific removal (NOM/unit biomass), probably due to increased electrostatic bonding between the humic material and the biomass. Adsorption of NOM with viable and inactivated (autoclaved or by sodium azide) fungal pellets occurred within 24 hours and the colour removal depended on the viability, method of inactivation and pH. Colour removal by viable pellets was higher under the same conditions, and this, combined with desorption data, confirmed that fungal metabolic activity was important in the decolorisation process. Overall, removals of up to 40–50% NOM from solution were obtained. Of this, removal by adsorption was estimated as 60–70%, half of which was physicochemical, the other half metabolically-dependent biosorption and bioaccumulation. The remainder was considered to be removed by biodegradation, although some of this may be ascribed to bioaccumulation and metabolically-dependent biosorption.

2002 ◽  
Vol 2 (5-6) ◽  
pp. 445-450 ◽  
Author(s):  
D.H. Kim ◽  
S.-H. Moon ◽  
J. Cho

A series of adsorption experiments were performed to investigate the factors affecting the transport of natural organic matter (NOM) in an ion-exchange (IX) membrane. In this study, the structure of the NOM was hypothesized to be an important factor in terms of the organic fouling of IX membrane. It was found that the adsorbed mass of hydrophobic NOM constituent on the membrane surface was higher than that of either the hydrophilic or transphilic NOM constituent. NOM adsorption was seriously affected by the apparent charge of the NOM. As the apparent charge increased, NOM adsorption also significantly increased. Moreover, the molecular mass of the hydrophobic NOM acids was too high to enable them to pass through the IX membrane, and this caused an accumulated adsorption of solutes on the membrane surface, i.e. NOM fouling. In addition, both pH and ionic strength affected NOM adsorption on the surface of the IX membrane. Lower NOM adsorption resulted from a lower pH and a higher ionic strength.


1999 ◽  
Vol 40 (9) ◽  
pp. 183-190 ◽  
Author(s):  
S. G. J. Heijman ◽  
A. M. van Paassen ◽  
W. G. J. van der Meer ◽  
R. Hopman

For the removal of DOC (and colour) several treatment steps are suggested. If it is also necessary to remove hardness nanofiltration is probably the first choice. For colour removal without softening a number of adsorbents are suggested in the literature. In order to estimate the costs of these treatment steps a dynamic column model based on batch experiments was used to predict the service time of the columns filled with different adsorbents. Also the (on site) regeneration of the different adsorbents was investigated in batch experiments. Especially the ion exchange resin was very promising. The costs of the treatment of one m3 water with a column filled with an ion exchange resin was estimated for the investigated case at 0.05 Euro.


2013 ◽  
Vol 724-725 ◽  
pp. 431-436
Author(s):  
Ming Sheng Yang

We conducts a systematic study on the biological sources of the sediment organic matter through the analysis of the organic carbon and nitrogen content in the sediments of Poyang Lake, the n-alkanes as biomarker and the characteristics of the compound-specific isotope of n-alkanes. It is found that the C/N ratio of organic matter is less than 10 in Poyang Lake and that the organic matter mainly originates from lacustrine aquatic organism. The short-chain hydrocarbon takes absolute advantage in the n-alkanes. The value of C21-/C22+is greater than 1, which shows that the biomass of bacteria and algae is greater than the sum of the aquatic submerged plants and terrigenous organisms biomass. The value of (nC15+nC17)/(nC23+nC25) of n-alkanes is greater than 2, which reveals that bacteria and algae have an absolute predominance in aquatic organism. The high carbon n-alkanes come from terrigenous plants and their compound-specific carbon isotope demonstrates that C3plant is the main biological source.


2019 ◽  
Vol 21 (1) ◽  
pp. 51-62 ◽  
Author(s):  
Matthew J. Berens ◽  
Bridget A. Ulrich ◽  
Jennifer H. Strehlau ◽  
Thomas B. Hofstetter ◽  
William A. Arnold

The fractionation of nitrogen and carbon isotopes during the reduction of 2,4-dinitroanisole is substantially different than that observed for hydrolysis reactions.


Author(s):  
Nana Osei B. Ackerson ◽  
Hannah K. Liberatore ◽  
Susan D. Richardson ◽  
Michael J. Plewa ◽  
Thomas A. Ternes ◽  
...  

Abstract Iopamidol (an iodinated x-ray contrast media) and bromide are precursors in the formation of halogenated disinfection byproducts (DBPs). The interactions of these precursors are vital to elucidate the formation of halogenated DBPs during chloramination. This work investigated the formation of total organic halogen and select individual DBPs in two laboratory-chloraminated source waters (SWs) containing iopamidol and bromide. Experiments were carried out in batch reactors containing Barberton SW (BSW) and Cleveland SW (CSW), spiked with iopamidol (5 μM), bromide (15 μM), and 100 μM monochloramine. Total organic iodine concentrations were approximately equal regardless of SW since they are mostly unreacted iopamidol and iopamidol DBPs. Almost equal amount of total organic chlorine (3–4 nM) was produced in the SWs but higher quantities of total organic bromine were formed in BSW than CSW. Substantial quantities of regulated trihalomethanes (THMs) and haloacetic acids (HAAs) were formed in the SWs, along with appreciable concentrations of iodinated trihalomethanes (CHBrClI, CHCl2I, and CHBr2I). Low concentrations of iodo-HAAs were detected, especially at low pH. Overall, bromide concentrations appeared to suppress iodo-DBP formation during chloramination of iopamidol in the presence of natural organic matter. A good correlation (R2 = 0.801) between the yields of regulated DBPs and iodo-DBPs was observed.


Sign in / Sign up

Export Citation Format

Share Document