Transport characterizations of natural organic matter in ion-exchange membrane for water treatment

2002 ◽  
Vol 2 (5-6) ◽  
pp. 445-450 ◽  
Author(s):  
D.H. Kim ◽  
S.-H. Moon ◽  
J. Cho

A series of adsorption experiments were performed to investigate the factors affecting the transport of natural organic matter (NOM) in an ion-exchange (IX) membrane. In this study, the structure of the NOM was hypothesized to be an important factor in terms of the organic fouling of IX membrane. It was found that the adsorbed mass of hydrophobic NOM constituent on the membrane surface was higher than that of either the hydrophilic or transphilic NOM constituent. NOM adsorption was seriously affected by the apparent charge of the NOM. As the apparent charge increased, NOM adsorption also significantly increased. Moreover, the molecular mass of the hydrophobic NOM acids was too high to enable them to pass through the IX membrane, and this caused an accumulated adsorption of solutes on the membrane surface, i.e. NOM fouling. In addition, both pH and ionic strength affected NOM adsorption on the surface of the IX membrane. Lower NOM adsorption resulted from a lower pH and a higher ionic strength.

Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 968
Author(s):  
Zhun Ma ◽  
Lu Zhang ◽  
Ying Liu ◽  
Xiaosheng Ji ◽  
Yuting Xu ◽  
...  

The fouling mechanism of the anion exchange membrane (AEM) induced by natural organic matter (NOM) in the absence and presence of calcium ions was systematically investigated via the extended Derjaguin–Landau–Verwey–Overbeek (xDLVO) approach. Sodium alginate (SA), humic acid (HA), and bovine serum albumin (BSA) were utilized as model NOM fractions. The results indicated that the presence of calcium ions tremendously aggravated the NOM fouling on the anion exchange membrane because of Ca-NOM complex formation. Furthermore, analysis of the interaction energy between the membrane surface and foulants via xDLVO revealed that short-range acid–base (AB) interaction energy played a significant role in the compositions of interaction energy during the electrodialysis (ED) process. The influence of NOM fractions in the presence of calcium ions on membrane fouling followed the order: SA > BSA > HA. This study demonstrated that the interaction energy was a dominating indicator for evaluating the tendency of anion exchange membranes fouling by natural organic matter.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


2004 ◽  
Vol 4 (4) ◽  
pp. 175-182 ◽  
Author(s):  
K. Rojek ◽  
F.A. Roddick ◽  
A. Parkinson

Phanerochaete chrysosporium was shown to rapidly decolorise a solution of natural organic matter (NOM). The effect of various parameters such as carbon and nitrogen content, pH, ionic strength, NOM concentration and addition of Mn2+ on the colour removal process was investigated. The rapid decolorisation was related to fungal growth and biosorption rather than biodegradation as neither carbon nor nitrogen limitation, nor Mn2+ addition, triggered the decolorisation process. Low pH (pH 3) and increased ionic strength (up to 50 g L‒1 added NaCl) led to greater specific removal (NOM/unit biomass), probably due to increased electrostatic bonding between the humic material and the biomass. Adsorption of NOM with viable and inactivated (autoclaved or by sodium azide) fungal pellets occurred within 24 hours and the colour removal depended on the viability, method of inactivation and pH. Colour removal by viable pellets was higher under the same conditions, and this, combined with desorption data, confirmed that fungal metabolic activity was important in the decolorisation process. Overall, removals of up to 40–50% NOM from solution were obtained. Of this, removal by adsorption was estimated as 60–70%, half of which was physicochemical, the other half metabolically-dependent biosorption and bioaccumulation. The remainder was considered to be removed by biodegradation, although some of this may be ascribed to bioaccumulation and metabolically-dependent biosorption.


2016 ◽  
Vol 94 (12) ◽  
pp. 2386-2393 ◽  
Author(s):  
Islem Louati ◽  
Fatma Guesmi ◽  
Chiraz Hannachi ◽  
Béchir Hamrouni

2017 ◽  
Vol 523 ◽  
pp. 36-44 ◽  
Author(s):  
K.A. Nebavskaya ◽  
V.V. Sarapulova ◽  
K.G. Sabbatovskiy ◽  
V.D. Sobolev ◽  
N.D. Pismenskaya ◽  
...  

2018 ◽  
Vol 146 ◽  
pp. 1-9 ◽  
Author(s):  
Nargess Amini ◽  
Isabelle Papineau ◽  
Veronika Storck ◽  
Pierre R. Bérubé ◽  
Madjid Mohseni ◽  
...  

1999 ◽  
Vol 40 (9) ◽  
pp. 183-190 ◽  
Author(s):  
S. G. J. Heijman ◽  
A. M. van Paassen ◽  
W. G. J. van der Meer ◽  
R. Hopman

For the removal of DOC (and colour) several treatment steps are suggested. If it is also necessary to remove hardness nanofiltration is probably the first choice. For colour removal without softening a number of adsorbents are suggested in the literature. In order to estimate the costs of these treatment steps a dynamic column model based on batch experiments was used to predict the service time of the columns filled with different adsorbents. Also the (on site) regeneration of the different adsorbents was investigated in batch experiments. Especially the ion exchange resin was very promising. The costs of the treatment of one m3 water with a column filled with an ion exchange resin was estimated for the investigated case at 0.05 Euro.


2004 ◽  
Vol 50 (12) ◽  
pp. 279-285 ◽  
Author(s):  
J.H. Kweon ◽  
D.F. Lawler

The biggest impediment for applying membrane processes is fouling that comes from mass flux (such as particle and organic matter) to the membrane surface and its pores. Numerous research articles have indicated that either particles or natural organic matter (NOM) has been the most detrimental foulant. Therefore, the role of particles in membrane fouling was investigated with two synthetic waters (having either particles alone or particles with simple organic matter) and a natural water. Membrane fouling was evaluated with flux decline behavior and direct images from scanning electron microscopy. The results showed that the combined fouling by kaolin and dextran (a simple organic compound selected as a surrogate for NOM) showed no difference from the fouling with only the organic matter. The similarity might stem from the fact that dextran (i.e., polysaccharide) has no ability to be adsorbed on the clay material, so that the polysaccharide behaves the same with respect to the membrane with or without clay material being present. In contrast to kaolin, the natural particles showed a dramatic effect on membrane fouling.


Sign in / Sign up

Export Citation Format

Share Document