Excellent hydrophilicity of polyurethane modified polyvinylidene fluoride

2021 ◽  
pp. 1-8
Author(s):  
Jiale Qu ◽  
Shen Gao ◽  
Zhenghao Hou

Polyvinylidene fluoride (PVDF) is a promising membrane material in ultrafiltration (UF) applications; its extensive application however is limited due to the disadvantage in hydrophilicity and low surface energy. Herein, a sort of TPU-modified PVDF membrane is prepared by blending method and its hydrophilicity is compared with a series of pure/modified PVDF membranes. The contact angle and pure water flux (PWF) results demonstrate that the hydrophilicity of the TPU-modified PVDF membrane is enhanced, and the performance is not inferior to that of traditional pore-modified PVDF membranes. SEM image shows that the TPU-modified PVDF membrane maintains morphology of the pure PVDF membrane, indicating that TPU molecules have excellent compatibility with PVDF molecules and can maintain the mechanical property of PVDF membrane to a certain extent. Finally, we explore the effects of TPU molecules and PVDF molecules on water molecules, respectively, from a microscopic perspective involving first principles. This investigation not only establishes that PVDF membrane has been prepared with enhanced hydrophilicity, but also provides a novel avenue for the modification of membrane properties.

2011 ◽  
Vol 295-297 ◽  
pp. 286-291
Author(s):  
Li Guo Wang ◽  
Xiao Guang Zhang ◽  
Shu Fang Hou ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
...  

Hydrophilic polyvinylidene fluoride (PVDF) flat ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of maleic anhydride grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated, the preparation technical parameters were determined, and the hydrophilic PVDF flat membranes were prepared. Then, hydrophilic PVDF membranes were characterized in terms of pure water flux, contact angle, infrared spectroscopic analysis and scanning electron microscope(SEM). The results showed that maleic anhydride had been grafted onto PVDF, and the hydrophilic performance of the modified membrane was better than the traditional one.


2018 ◽  
Vol 19 (4) ◽  
pp. 1279-1285
Author(s):  
Q. Y. Zhang ◽  
Q. An ◽  
Y. G. Guo ◽  
J. Zhang ◽  
K. Y. Zhao

Abstract To enhance the anti-fouling and separating properties of polyvinylidene fluoride (PVDF) membranes, an amphiphilic copolymer of methyl methacrylate and 2-acrylamido-2-methylpropane sulfonic acid, poly(MMA-co-AMPS), was designed and synthesized. Through a phase-inversion process, the poly(MMA-co-AMPS) were fully dispersed in the PVDF membrane. The properties of membrane including the surface and cross-section morphology, surface wettability and fouling resistance under different pH solutions were investigated. Compared to the unmodified PVDF membranes, the contact angles of modified PVDF membranes decreased from 80.6° to 71.6°, and the pure water flux increased from 54 to 71 L·m−2·h−1. In addition, the hybrid PVDF membrane containing 0.5 wt% copolymers demonstrated an larger permeability, better fouling resistance and higher recovery ratio via pure water backlashing, when it was compared with the other blend membranes, and the virgin one in the cyclic test of anti-fouling. The modified membranes with the copolymers possessed an outstanding performance and may be used for further water treatment applications.


2013 ◽  
Vol 750-752 ◽  
pp. 1941-1944
Author(s):  
Jiao Jiao Dong ◽  
Yu Feng Zhang ◽  
Dong Qing Liu

In this article, a series of the PVDF/PPTA blend membranes with porous structure and excellent performance were successfully prepared by the phase transformation method. The effect of the mass ratio of W(PVDF)/W(PPTA) was systematically investigated.The morphology of the blend membranes were examined using scanning electron microscope (SEM). The permeation performance was characterized by measuring pure water flux. Meanwhile, the mechanical properties of membranes were researched. The experiment results confirmed that the blending ratio is a major factor to influence the structure and performance of PVDF/PPTA blend membrane. The blend membranes possess much better permeability than pure PVDF membrane and fairly good the mechanical properties especially for the membrane made by PVDF : PPTA=6 : 1.


2011 ◽  
Vol 306-307 ◽  
pp. 1563-1568 ◽  
Author(s):  
Li Guo Wang ◽  
Xiao Guang Zhang ◽  
Shu Fang Hou ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
...  

Hydrophilic polyvinylidene fluoride (PVDF) flat ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of acrylic acid grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF flat membranes were prepared. Then, hydrophilic PVDF membranes were characterized in terms of pure water flux, contact angle, infrared spectroscopic analysis and scanning electron microscope (SEM). The results showed that acrylic acid had been grafted onto PVDF, and the hydrophilic performance of the modified membrane was better than the traditional one.


2020 ◽  
Vol 17 (2) ◽  
pp. 1499-1502
Author(s):  
J. Hamdan ◽  
H. Hasbullah ◽  
M. N. M. Sokri ◽  
N. S. M. Sabri ◽  
M. A. F. Suran ◽  
...  

Polyvinylidene Fluoride (PVDF) has been used as a membrane’s base material for wastewater treatment for quite some time. Due to PVDF hydrophobic nature, fouling will occur, thus, reducing the membrane performance. The main objective of this study was to investigate the effect of various chitosan loadings on membrane hydrophilicity and overall liquid separation performance. The loadings of chitosan (wt.%) used were neat PVDF, 0.25%, 0.5%, 0.75% and 1% in PVDF mixed matrix membrane. It was found that 0.75% chitosan membrane had the lowest contact angle of 63° making it the most hydrophilic. The pure water flux test on the membranes also showed the same trend where the lowest contact angle resulting in the highest pure water flux. The PVDF membrane containing 0.75% chitosan possessed the highest pure water flux of 43.5 Lm−2h−1. With the rejection of dye of over 43.12%. The study proved that adding chitosan into PVDF membrane certainly improved the membrane hydrophilicity and the percentage removal of methylene blue dye.


2011 ◽  
Vol 480-481 ◽  
pp. 691-696 ◽  
Author(s):  
Li Guo Wang ◽  
Xiao Guang Zhang ◽  
Shi Qi Guo ◽  
Ai Min Wang ◽  
Xiu Ju Wang ◽  
...  

Hydrophilic Polyvinylidene fluoride (PVDF) flat ultrafiltration membranes were prepared by wet-spinning method. The influence of blending ratio ( the mass ratio of PVDF and PAA), polymer concentration on preparation of blending modified hydrophilic PVDF ultrafiltration membranes were investigated, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF membranes were prepared. Then, hydrophilic PVDF membranes were characterized in terms of IR spectra, contact angle, scanning electron microscopy images, pure water flux and rejection. The results showed that hydrophilic ultrafiltration membrane could be prepared with PAA and PVDF blends, the hydrophilicity improved greatly, and it was better than traditional PVDF membrane.


2018 ◽  
Vol 24 (7) ◽  
pp. 50
Author(s):  
Mohammed Amer Abdul-Majeed

In this study, polymeric ultrafiltration (UF) membranes were prepared by phase inversion method to obtain both antibacterial and organic antifouling properties. The membranes were cast from a solution of polyvinylidene fluoride (PVDF) and formative silver (Ag) nanoparticles were successfully immobilized on a polymer. This was done using a solvent N, N-dimethylformamide (DMF) which is a solvent for the PVDF polymer meanwhile it is a reducing agent for silver ion. The effect of silver nanoparticles additives on the performance of polymeric ultrafiltration membrane was verified. Chemical composition and morphology of the surfaces of the membranes were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). The antibacterial property of modified membrane and the influence of silver nanoparticles on pure water flux of composite membrane at 0.2 Mpa were also verified. The experimental results obtained concluded that the composite membrane properties have been improved by the integration of Ag nanoparticles. The grafted membrane with silver nanoparticles has shown a clear ability to inhibit the growth of E. coli, Pseudomonas Aeruginosa, and Bacillus Cereus. While the clean PVDF membrane (without any additives) did not show any effect of preventing the growth of these species of bacteria referred to above. The pure water flux, porosity and the mean pore size of composite membrane can reach 261.8 L/m2 h, 85.4%, and 0.0206 µm, respectively, and it was much more than that of pure PVDF membrane.  


2011 ◽  
Vol 480-481 ◽  
pp. 201-206
Author(s):  
Li Guo Wang ◽  
Xiu Ju Wang ◽  
Ai Min Wang ◽  
Wen Juan Liu ◽  
Shi Qi Guo ◽  
...  

Hydrophilic Polyvinylidene fluoride (PVDF) hollow fiber ultrafiltration membranes were prepared by wet-spinning method. The effects of technical parameters of acrylic acid grafted onto PVDF on the performance of hydrophilic PVDF membranes were investigated via orthogonal test, the technical parameters of preparation of hydrophilic PVDF membranes were determined, and hydrophilic PVDF membranes were prepared. Then hydrophilic PVDF membranes were characterized in terms of breaking strength, breaking elongation, rupture pressure, pure water flux and rejection. The fouling properties and the conditions of acrylic acid grafted onto PVDF were also examined. The results showed that acrylic acid had been grafted onto PVDF, the breaking strength and rupture pressure improved greatly, and the fouling properties were better than PS hollow fiber UF membrane.


2018 ◽  
Vol 18 (1) ◽  
pp. 1
Author(s):  
Romaya Sitha Silitonga ◽  
Nurul Widiastuti ◽  
Juhana Jaafar ◽  
Ahmad Fauzi Ismail ◽  
Muhammad Nidzhom Zainol Abidin ◽  
...  

Poly(vinylidene fluoride) (PVDF) has outstanding properties such as high thermal stability, resistance to acid solvents and good mechanical strength. Due to its properties, PVDF is widely used as a membrane matrix. However, PVDF membrane is hydrophobic properties, so as for specific applications, the surface of membrane needs to be modified to become hydrophilic. This research aims to modify PVDF membrane surface with chitosan and glutaraldehyde as a crosslinker agent. The FTIR spectra showed that the modified membrane has a peak at 1655 cm-1, indicating the imine group (–N=C)- that was formed due to the crosslink between amine group from chitosan and aldehyde group from glutaraldehyde. Results showed that the contact angle of the modified membrane decreases to 77.22° indicated that the membrane hydrophilic properties (< 90°) were enhanced. Prior to the modification, the contact angle of the PVDF membrane was 90.24°, which shows hydrophobic properties (> 90°). The results of porosity, Ɛ (%) for unmodified PVDF membrane was 55.39%, while the modified PVDF membrane has a porosity of 81.99%. Similarly, by modifying the PVDF membrane, pure water flux increased from 0.9867 L/m2h to 1.1253 L/m2h. The enhancement of porosity and pure water flux for the modified PVDF membrane was due to the improved surface hydrophilicity of PVDF membrane.


Membranes ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 703
Author(s):  
Yi Ding ◽  
Zhansheng Guo ◽  
Xinan Dong ◽  
Hong You ◽  
Junxue Mei ◽  
...  

Based on carboxylated multi-walled carbon nanotubes (MWCNTs-COOH), a MWCNTs/PVDF conductive membrane was prepared by a vacuum filtration cross-linking method. The surface compositions and morphology of conductive membranes were studied by X-ray photoelectron spectroscopy and high-resolution field emission scanning electron microscopy, respectively. The effects of cross-linked polymeric polyvinyl alcohol (PVA) on the conductive membrane properties such as the porosity, pore size distribution, pure water flux, conductivity, hydrophilicity, stability and antifouling properties were investigated. Results showed that the addition of PVA to the MWCNTs/PVDF conductive membrane decreased the pure water flux, porosity and the conductivity. However, the hydrophilicity of the modified MWCNTs/PVDF conductive membrane was greatly improved, and the contact angle of pure water was reduced from 70.18° to 25.48° with the addition of PVA contents from 0 wt% to 0.05 wt%. Meanwhile, the conductive membranes with higher content had a relatively higher stability. It was found that the conductive functional layer of the conductive membrane had an average mass loss rate of 1.22% in the 30 min ultrasonic oscillation experiment. The tensile intensity and break elongation ratio of the conductive membrane are improved by the addition of PVA, and the durability of the conductive membrane with PVA was superior to that without PVA added. The electric assisted anti-fouling experiments of modified conductive membrane indicated that compared with the condition without electric field, the average flux attenuation of the conductive membrane was reduced by 11.2%, and the membrane flux recovery rate reached 97.05%. Moreover, the addition of PVA could accelerate the clean of the conductive membranes.


Sign in / Sign up

Export Citation Format

Share Document