Experimental study of clear-water contraction scour

2020 ◽  
Vol 20 (3) ◽  
pp. 943-952 ◽  
Author(s):  
Ravindra Kumar Singh ◽  
Manish Pandey ◽  
Jaan H. Pu ◽  
Srinivas Pasupuleti ◽  
Vasanta G. Kumar Villuri

Abstract In this paper, experimental results of clear-water scour on a sand bed under short contractions were studied. Sequences of test runs were performed under clear-water conditions for three different contraction ratios. The outcomes of the experiments were employed to define the effects of various parameters on equilibrium scour depth under clear-water scour conditions. In this work, the precision of three maximum scour depth equations was tested from previous studies for contraction scour cases. Two new analytical equations were proposed to calculate time-dependent scour depth and maximum scour at equilibrium conditions, respectively, from the study. The proposed equations were validated using measurements from the present study as well as from previous literature, and the equations show a reasonable agreement between measured and computed values of scour depth under clear-water conditions in short contraction. The presented equations can be used for studying protection of the submerged portion at a bridge abutment or any similar structure.

2014 ◽  
Vol 41 (10) ◽  
pp. 892-899 ◽  
Author(s):  
Peng Wu ◽  
Faye Hirshfield ◽  
Jueyi Sui

An experimental study was conducted to investigate the scour development around bridge abutments under ice cover with non-uniform natural sands. Two abutments and three non-uniform sediments were used in the research. The mechanism of incipient motion for non-uniform sediments under ice cover was analyzed. By introducing scour angles around two abutments, a relationship between maximum scour depth and velocity was established for clear-water scour under ice cover. Dimensionless shear stress was also calculated and compared with shear Reynolds number for non-uniform sediments. The maximum scour depth and dimensionless shear stress were investigated under both open channel, smooth cover and rough covered conditions. Results show that around the square abutment, the scour angle is smaller than that of the semi-circular abutment. For clear water scour, the maximum scour depth increases due to the presence of ice cover.


Author(s):  
Terry W. Sturm ◽  
Aftab Sadiq

An experimental study was conducted of the depth of clear-water scour around the end of a square-edged bridge abutment terminating in the floodplain of a compound channel. The study's purpose was to improve current techniques of abutment scour prediction, which are based primarily on laboratory studies in rectangular channels. It is indicated that a discharge contraction ratio arising from a theoretical contraction scour analysis for equilibrium conditions can be used for explaining the effect of flow distribution on the local abutment scour depth in the case where significant backwater occurs from bridge contraction. The use of reference values of approach flow depth and velocity in the floodplain for undisturbed conditions without the bridge is shown to collapse experimental results for scour depth in both the case of a contraction with negligible backwater, and the case of a contraction with significant backwater in the bridge approach section.


2010 ◽  
Vol 37 (12) ◽  
pp. 1621-1630 ◽  
Author(s):  
Zafer Bozkus ◽  
Murat Çeşme

The aim of this experimental study is to examine the effect of inclination of dual bridge piers on scour depth under clear-water conditions for various uniform flow depths. Duration of 4 h was used in the experiments for each run. Scour depths were measured at four different points around the piers. The depths of local scour around inclined piers were found to be substantially smaller than the scour depths around vertical piers. Dimensional and nondimensional curves were developed and presented to show the variation of scour depth with relevant parameters obtained in the dimensional analysis. Results of the study were compared to those obtained from a similar study performed with single inclined piers to see the effect of the second pier on scour depths. Useful equations for the design engineers were developed based on multiple regression analyses, to be used for predicting local scour depths around vertical and (or) inclined piers in uniform and (or) nonuniform sediments. Normalized scour depths measured around the vertical piers in the present study were compared with those computed by an equation suggested by Melville and Sutherland (1988), and also by an equation developed in the present study.


2018 ◽  
Vol 80 ◽  
pp. 49-56 ◽  
Author(s):  
Mustafa Dogan ◽  
Aysegul Ozgenc Aksoy ◽  
Yalcin Arisoy ◽  
Mehmet Sukru Guney ◽  
Vahid Abdi

2005 ◽  
Vol 32 (4) ◽  
pp. 775-781 ◽  
Author(s):  
Rajkumar V Raikar ◽  
Subhasish Dey

An experimental investigation on scour at circular and square piers in uniform and non-uniform gravels (fine and medium sizes) under clear-water scour at limiting stability of gravels is presented. From the experimental results, it is observed that the equilibrium scour depth increases with decrease in gravel size. The variation of equilibrium scour depth with gravel sizes departures considerably from that with sand sizes. Consequently, the resulting sediment size factors for gravels, obtained from envelope curve fitting, are significantly different from the existing sediment size factor for sands. The influence of gravel gradation on scour depth is also prominent in non-uniform gravels. The time scales to represent the time variation of scour depth in uniform and non-uniform gravels are determined. For uniform gravels, the non-dimensional time scale increases with increase in pier Froude number and gravel size, whereas for non-uniform gravels, it decreases with increase in geometric standard deviation of particle size distribution of gravels.Key words: bridge pier, gravel beds, scour, erosion, sediment transport, open channel flow, hydraulic engineering.


Author(s):  
Xiaofan Lou ◽  
Kaibing Zhang ◽  
Zhenhong Chen

Abstract The effect of Reynolds number (Re) on the local scour around a monopile encountering steady current was investigated experimentally in a water flume. The experiment was performed using circular cylinders with different diameters under two different freestream velocities, covering both clear-water and live-bed scours and a Reynolds number range of approximately 9,000–60,000. The time-series of the scour depth was recorded during the whole scour process and the scour pit was scanned after the scour process reached equilibrium. Results are presented in terms of the equilibrium scour depth, the time-scale of the scour process and the three-dimensional scour profile at different Reynolds numbers. For both clear-water and live-bed scours, the time history of the scour process indicate that the time-scale becomes larger as Re increases. It is also found that the normalized equilibrium scour depth, as well as the normalized scour radius, decrease with the increasing Re. An empirical equation of the equilibrium scour depth is derived as a function of Reynolds number based on the experimental results so as to better account for Re effect in the scour design.


2011 ◽  
Vol 121-126 ◽  
pp. 162-166
Author(s):  
Yao Ming Hong ◽  
Min Li Chang ◽  
Hsueh Chun Lin ◽  
Yao Chiang Kan ◽  
Chi Chang Lin

This study analyzed the characteristics of bridge scoured by clear water according to 14 groups of laboratory experiments. The formulation of critical velocity based on historical equations of clear water scour was concluded for the test circumstances in laboratory. The experimental conditions include the variation of flow velocity, sediment cover depth, and diameter of bridge pier/bases. The erosion status prior to the maximum scour depth was recorded by a pinhole camera, and, in general, the equilibrium scour depth was reached after 24 hours. The maximum scour depth increases as the sand cover depth decreases. As the same sediment depth, the fast flow velocity will induce the deep scour depth with respect to the slow flow velocity. The same result can be observed for the large diameter of pier (or base) versus the small one. The maximum scour depths in the front of the pier are always deeper than that behind the pier.


Author(s):  
R. Yasa ◽  
A. Etemad-Shahidi

Reliable prediction of scour depth is important in engineering analysis concerned with pipeline stability. The aim of this study is to develop an accurate formula for prediction of the current-induced scour depth under pipelines. Previous experimental data are collected and used as a database by which to study the effect of different parameters on the scour depth. Decision tree and nonlinear regression approaches are used to develop engineering design formulae for estimation of the current induced scour depth in both live bed and clear water conditions. It is demonstrated that the proposed formulas are more accurate than previous ones in predicting the scour depth in all conditions. Probabilistic formulas are also presented for different levels of risk, aimed at safe and economic design of submerged pipelines.


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 445 ◽  
Author(s):  
Alonso Pizarro ◽  
Enrico Tubaldi

Local scour is a dynamic process evolving during the lifetime of bridges as a result of the changes in hydrologic and hydraulic conditions. Current approaches for scour risk assessment are generally based on the evaluation of the equilibrium scour depth for a flood event with a prefixed return period. The temporal evolution of the bridge-pier scour process is usually disregarded, by assuming that equilibrium conditions are always attained, regardless of the flood properties. However, recent studies have highlighted the importance of accounting for the contribution of multiple flood events and their exact hydrograph shape. This study aims at quantifying the epistemic uncertainty related to the modelling of the temporal evolution of scour under multiple consecutive flood events in clear-water conditions. A simple numerical case study is considered, using a Markovian framework to describe probabilistically the progression of scour. Well-known time-dependent scour models are used to estimate the temporal evolution of the scour-depth under each flood hydrograph, and the scour estimates are compared with those obtained using widely employed equilibrium scour formulas. Results show that the expected scour depth is influenced by the parameters used to describe the flood hydrograph and that the probability distribution of the scour depth is highly sensitive to the choice of the time-dependent scour model. The uncertainty in the scour estimation stemming from the formula adopted in this study for describing the temporal evolution of the scour depth can be higher than those related to the formula adopted for equilibrium scour.


Sign in / Sign up

Export Citation Format

Share Document