scholarly journals Efficient electrochemical detection of geosmin in environmental waters

2020 ◽  
Vol 20 (6) ◽  
pp. 2206-2215
Author(s):  
Jiawei Li ◽  
Qiang Xue ◽  
Tao Chen ◽  
Zhiwei Wang ◽  
Ting Liu ◽  
...  

Abstract A new electrochemical sensor based on molecular imprinting technology was developed, for rapid and sensitive detection of the odorous substance geosmin (GSM) in water. In this method, the molecularly imprinted membrane was successfully modified on the surface of the glassy carbon electrode (GCE) using the electrochemical deposition method. In the presence of the target analyte (geosmin), the target analyte occupies the detection site and the detection signal will attenuate. As the concentration of the target analyte increases, the attenuation of the electrical signal becomes more pronounced. This sensor can quantitatively detect geosmin at concentrations as low as 5 ng/L, which is currently the lowest limit of detection (LOD) for GSM detection by an electrochemical sensor in reported studies. The modified GCE provided an analytical curve for GSM detection in the range of 5–200 ng/L.

2021 ◽  
pp. 174751982198995
Author(s):  
Yi Wang ◽  
Jianshe Tang ◽  
Li Xiang

A simple and efficient electrochemical sensor based on a homemade reshaped micropipette tip carbon paste electrode is reported. Molecularly imprinted polymer membranes of graphene oxide and polypyrrole are synthesized and modified on the surface of micropipette tip carbon paste electrode. The merit of the method is evaluated under optimized conditions via differential pulse voltammetrics. The prepared sensor exhibits remarkable sensitivity toward dopamine with a linear range of 6.4 × 10−8–2 × 10−4 M, with a limit of detection as low as 1 × 10−8 M. The proposed method is applied for the determination of dopamine in urine samples by the standard addition route. A range of 1 × 10−7–1 × 10−4 M is obtained from these samples. The relative recoveries are in the range of 95.2%–104%. The proposed method has acceptable performance for the determination of dopamine in real samples with excellent sensitivity and selectivity.


Biosensors ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
Bogdan Feier ◽  
Adrian Blidar ◽  
Alexandra Pusta ◽  
Paula Carciuc ◽  
Cecilia Cristea

In this study, a new electrochemical sensor was developed for the detection of cefalexin (CFX), based on the use of a molecularly imprinted polymer (MIP) obtained by electro‒polymerization in an aqueous medium of indole-3-acetic acid (I3AA) on a glassy carbon electrode (GCE) and on boron-doped diamond electrode (BDDE). The two different electrodes were used in order to assess how their structural differences and the difference in the potential applied during electrogeneration of the MIP translate to the performances of the MIP sensor. The quantification of CFX was performed by using the electrochemical signal of a redox probe before and after the rebinding of the template. The modified electrode was characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The influence of different parameters on the fabrication of the sensor was tested, and the optimized method presented high selectivity and sensitivity. The MIP-based electrode presented a linear response for CFX concentration range of 10 to 1000 nM, and a limit of detection of 3.2 nM and 4.9 nM was obtained for the BDDE and the GCE, respectively. The activity of the sensor was successfully tested in the presence of some other cephalosporins and of other pharmaceutical compounds. The developed method was successfully applied to the detection of cefalexin from real environmental and pharmaceutical samples.


RSC Advances ◽  
2021 ◽  
Vol 11 (58) ◽  
pp. 36769-36776
Author(s):  
Qing Gao ◽  
Yang Zang ◽  
Ju Xie ◽  
Yongchuan Wu ◽  
Huaiguo Xue

A hybrid bilayer molecularly imprinted membrane-dependent electrochemical sensor was developed for bisphenol A assay based on 4-pentenoyl-isoleucyl-chitosan oligosaccharide and acrylamide functional monomers.


Author(s):  
Sibel A. A OZKAN ◽  
S. Irem KAYA ◽  
Goksu Ozcelikay ◽  
Canan Armutcu

Abstract We explain the development of an ultra-sensitive molecularly imprinted polymer-based electrochemical sensor for rapid and selective determination of bisphenol A (BPA) in human serum and water samples. Electropolymerization of functional monomer aniline was performed in the presence of BPA by cyclic voltammetry (CV) to prepare a molecularly imprinted poly(aniline) based GCE sensor (MIP(ANI)/GCE). The developed MIP surface was characterized using Fourier-transform infrared spectroscopy, Raman spectrometry, scanning electron microscopy, contact angle measurements, CV, and electrochemical impedance spectroscopy. The MIP(ANI)/GCE sensor showed a highly sensitive performance with a linear range of 1.0 and 8.0×10−15 M. The limit of detection (LOD) and limit of quantification (LOQ) values were 0.193 and 0.643 fM, respectively. The applicability of the MIP(ANI)/GCE was assessed by applying it to human serum and plastic bottled water samples. The LOD and LOQ values were calculated as 0.257 and 0.856 fM for the serum sample. Imprinting factor and interference studies were also carried out using similarly structured compounds and the most common interfering agents showing the selectivity of the MIP(ANI)/GCE sensor. Finally, the non-imprinted polymer (NIP)-based sensor was prepared to control the MIP(ANI)/GCE performance.


2019 ◽  
Vol 15 (3) ◽  
pp. 251-257
Author(s):  
Bahareh Sadat Yousefsani ◽  
Seyed Ahmad Mohajeri ◽  
Mohammad Moshiri ◽  
Hossein Hosseinzadeh

Background:Molecularly imprinted polymers (MIPs) are synthetic polymers that have a selective site for a given analyte, or a group of structurally related compounds, that make them ideal polymers to be used in separation processes.Objective:An optimized molecularly imprinted polymer was selected and applied for selective extraction and analysis of clozapine in rat brain tissue.Methods:A molecularly imprinted solid-phase extraction (MISPE) method was developed for preconcentration and cleanup of clozapine in rat brain samples before HPLC-UV analysis. The extraction and analytical process was calibrated in the range of 0.025-100 ppm. Clozapine recovery in this MISPE process was calculated between 99.40 and 102.96%. The limit of detection (LOD) and the limit of quantification (LOQ) of the assay were 0.003 and 0.025 ppm, respectively. Intra-day precision values for clozapine concentrations of 0.125 and 0.025 ppm were 5.30 and 3.55%, whereas inter-day precision values of these concentrations were 9.23 and 6.15%, respectively. In this study, the effect of lipid emulsion infusion in reducing the brain concentration of drug was also evaluated.Results:The data indicated that calibrated method was successfully applied for the analysis of clozapine in the real rat brain samples after administration of a toxic dose to animal. Finally, the efficacy of lipid emulsion therapy in reducing the brain tissue concentration of clozapine after toxic administration of drug was determined.Conclusion:The proposed MISPE method could be applied in the extraction and preconcentration before HPLC-UV analysis of clozapine in rat brain tissue.


2020 ◽  
Vol 16 (4) ◽  
pp. 413-420 ◽  
Author(s):  
Youyuan Peng ◽  
Qiaolan Ji

Background: As a broad-spectrum antibiotic of the sulfonamide family, Sulfadimethoxine (SDM) has been widely utilized for therapeutic and growth-promoting purposes in animals. However, the use of SDM can cause residual problems. Even a low concentration of SDM in the aquatic system can exert toxic effects on target organisms and green algae. Therefore, the quantitation of SDM residues has become an important task. Methods: The present work describes the development of a sensitive and selective electrochemical sensor for sulfadimethoxine based on molecularly imprinted poly(o-aminophenol) film. The molecular imprinted polymer film was fabricated by electropolymerizing o-aminophenol in the presence of SDM after depositing carboxylfunctionalized multi-walled carbon nanotubes onto a glassy carbon electrode surface. SDM can be quickly removed by electrochemical methods. The imprinted polymer film was characterized by cyclic voltammetry, differential pulse voltammetry and scanning electron microscopy. Results: Under the selected optimal conditions, the molecularly imprinted sensor shows a linear range from 1.0 × 10-7 to 2.0 × 10-5 mol L-1 for SDM, with a detection limit of 4.0 × 10-8 mol L-1. The sensor was applied to the determination of SDM in aquaculture water samples successfully, with the recoveries ranging from 95% to 106%. Conclusion: The proposed sensor exhibited a high degree of selectivity for SDM in comparison to other structurally similar molecules, along with long-term stability, good reproducibility and excellent regeneration capacity. The sensor may offer a feasible strategy for the analysis of SDM in aquaculture water samples.


2021 ◽  
Vol 11 (4) ◽  
pp. 1577
Author(s):  
Marco Mora-Granados ◽  
David González-Gómez ◽  
Jin Su Jeong ◽  
Alejandrina Gallego-Picó

Studies for monitoring the bioavailability of dietary flavonoid compounds generate great interest. Among them, low-molecular-weight phenolic acids, secondary metabolites present in colonic catabolism and urinary excretion, have been proposed as biomarkers of polyphenol intake. Using 4-hydroxyphenylacetic acid as a template, a molecularly imprinted polymer (MIP) was synthesized for selective extraction of these hydroxylated metabolites from human urine samples and posterior analysis in an HPLC-DAD-MS system. Polymers were characterized by Scanning electron microscopy (SEM), Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), Brunauer-Emmett-Teller (BET) method, and binding experiments. MIP presents specific recognition ability for template and analogues molecules. This capacity of recognition and the pH dependence of the binding strength was also studied. The method was validated over a concentration range of 0.25–40 mg/L, r2 > 0.995. In the optimized conditions, the recovery value was 94% with RSD 1.2%. The Limit of Detection (LOD) and Limit of Quantification (LOQ) were 1.22 and 3.69 mg/L, respectively. In our knowledge, it is the first time that this methodology is applied to analyze urinary catabolites of the polyphenol compound and to provide a specific method and simple analysis alternative. The selective extraction of these metabolites improves the application and results obtained by other less sensitive analysis methods than the validation method. It also facilitates the development of new screening methods.


Sign in / Sign up

Export Citation Format

Share Document