scholarly journals Study on the dynamic characteristics of shallow groundwater level under the influence of climate change and human activities in Cangzhou, China

Author(s):  
Baizhong Yan ◽  
Xiaomeng Li ◽  
Junliang Hou ◽  
Pan Bi

Abstract Based on the monitoring data of groundwater level, mining data and meteorological data from 1986 to 2015 in Cangzhou City, the change characteristics of depth of groundwater level were studied. On this basis, the non-parametric statistical test method (Mann-Kendall method) was used to study the trend of depth of groundwater level. Besides the principal component analysis method and grey correlation method were used to study groundwater influence factors. Finally, the multivariable time series model was used to predict the depth of groundwater level. The results showed that: In the past 30 years, influenced by human activities and meteorological changes, the groundwater flow field in 1986–2015 was generally move from southwest to northeast, the depth of groundwater level was increasing from the initial 3.26 to 4.06 m, with an annual increase rate of 0.027 m/a; the contribution rate of exploitation factor, precipitation factor, evaporation factor were 40, 20 and 40%; the fitting figure of the observed values and the predicted values were very good, with an average relative error of 7.73%. According to the prediction schemes, when the evaporation increases by 5%, and the agricultural exploitation decreases by 5%, the depth of groundwater will reach 3.39 m; when the evaporation increases by 10%, and the agricultural exploitation decreases by 10%, the depth of groundwater will reach 3.32 m. This study had important reference significance for regional groundwater treatment and rational utilization.

2021 ◽  
Vol 930 (1) ◽  
pp. 012012
Author(s):  
T Widodo ◽  
W Wilopo ◽  
A Setianto

Abstract Groundwater is a water resource that is still a mainstay for humans. The need for groundwater increases with the growth of population and the development of the industrial and agricultural sectors. The residents of Kediri City still use wells from shallow aquifers to fulfill their water needs. Shallow aquifers are prone to pollution due to the influence of shallow groundwater depths and human activities. The purpose of this study is to determine the vulnerability of groundwater pollution in Kediri City. Groundwater vulnerability was conducted by the GOD method (Groundwater Occurrence, Overlaying Lithology, and Depth of Groundwater) that consists of 3 parameters, namely the groundwater confinement, the type of overlying strata, and the depth of the groundwater level. The analysis results show that the level of groundwater vulnerability according to the GOD method in Kediri City consists of moderate and high classes. The western and the eastern part of Kediri City is classified as a high level of vulnerability. In contrast, in the middle of Kediri City, it tends to experience a moderate level of vulnerability.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 303 ◽  
Author(s):  
Huanhuan Li ◽  
Yudong Lu ◽  
Ce Zheng ◽  
Xiaonan Zhang ◽  
Bao Zhou ◽  
...  

Climate change and human activities have profound effects on the characteristics of groundwater in arid oases. Analyzing the change of groundwater level and quantifying the contributions of influencing factors are essential for mastering the groundwater dynamic variation and providing scientific guidance for the rational utilization and management of groundwater resources. In this study, the characteristics and causes of groundwater level in an arid oasis of Northwest China were explored using the Mann–Kendall trend test, Morlet wavelet analysis, and principal component analysis. Results showed that the groundwater level every year exhibited tremendous regular characteristics with the seasonal exploitation. Meanwhile, the inter-annual groundwater level dropped continuously from 1982 to 2018, with a cumulative decline depth that exceeded 12 m, thereby causing the cone of depression. In addition, the monthly groundwater level had an evident cyclical variation on the two time scales of 17–35 and 7–15 months, and the main periodicity of monthly level was 12 months. Analysis results of the climatic factors from 1954 to 2018 observed a significant warming trend in temperature, an indistinctive increase in rainfall, an inconspicuous decrease in evaporation, and an insignificant reduction in relative humidity. The human factors such as exploitation amount, irrigated area, and population quantity rose substantially since the development of the oasis in the 1970s. In accordance with the quantitative calculation, human activities were decisive factors on groundwater level reduction, accounting for 87.79%. However, climate change, including rainfall and evaporation, which contributed to 12.21%, still had the driving force to change the groundwater level in the study area. The groundwater level of Yaoba Oasis has been greatly diminished and the ecological environment has deteriorated further due to the combined effect of climate change and human activities.


2020 ◽  
Author(s):  
Inga Retike ◽  
Jānis Bikše ◽  
Aija Dēliņa ◽  
Andis Kalvāns ◽  
Alise Babre ◽  
...  

<p>More severe and frequent drought events are one of the main challenges faced worldwide in the context of climate change. Now droughts can be observed in the areas that are typically not classified as drought prone regions and more often groundwater vulnerability to prolonged drought events is reported. Groundwater drought is relatively new drought type defined as lower than normal groundwater level.</p><p>Most recent drought event in Europe in 2018 significantly affected shallow groundwater aquifers in the Baltic states. That year, groundwater droughts in Latvia caused large financial losses to many farmers, and rural households frequently reported dry dug wells. Even though main groundwater drought consequences are depleted aquifers and/or reduced base flows to rivers, drought may have an influence on groundwater quality as well (e.g. reduced denitrification rates due to lower groundwater levels and shorter travel times in anoxic zone).</p><p>This study presents groundwater chemical composition changes with respect to groundwater level variations between six sampling campaigns carried out during the groundwater drought event in 2017-2018 in central part of Latvia. Groundwater samples were taken from specifically established monitoring network with seven stations, each having two to four shallow groundwater wells with the maximum depth of four meters. In total more than 100 groundwater, surface water and spring water samples were collected every two months for a one-year period. Major ions, water stable isotopes, biogenic and trace elements were analyzed in laboratory. Patterns were analyzed by multivariate statistical analysis (Principal Component Analysis, Cluster Analysis and Discriminant Analysis).  </p><p>The study is supported by fundamental and applied science research programme, project Nr.lzp-2019/1-0165 “Spatial and temporal prediction of groundwater drought with mixed models for multilayer sedimentary basin under climate change”.</p>


2007 ◽  
Vol 11 (1) ◽  
pp. 270-282 ◽  
Author(s):  
D. L. Gasca-Tucker ◽  
M. C. Acreman ◽  
C. T. Agnew ◽  
J. R. Thompson

Abstract. Wet grasslands are being restored across the UK and Europe to reinstate their high biodiversity following over 50 years of drainage and conversion to arable agriculture. The water balance of many wet grasslands is dominated by precipitation and evaporation and it is essential to quantify evaporation rates to understand the hydrological functioning of wetlands and the implications for water resources in catchments where wetlands are being restored. This paper considers data from direct measurements of evaporation from the Pevensey Levels wet grassland using the eddy correlation method. Equations are derived to predict actual evaporation using meteorological data on the site or from standard meteorological station observations. It was found that evaporation could be estimated reliably from meteorological variables, such as wind speed, temperature and humidity and by water availability. It was also found that when water availability is high, evaporation is high and may exceed reference evaporation values, raising questions over the deployment of the two-step Penman-Monteith model unless reliable crop coefficients and relative evaporation figures can be determined.


2018 ◽  
Vol 22 (6) ◽  
pp. 1462-1483 ◽  
Author(s):  
Min Deng ◽  
Xuexi Yang ◽  
Yan Shi ◽  
Jianya Gong ◽  
Jianbo Tang ◽  
...  

2018 ◽  
Vol 32 (15) ◽  
pp. 5041-5052 ◽  
Author(s):  
Georgios N. Kouziokas ◽  
Alexander Chatzigeorgiou ◽  
Konstantinos Perakis

Rangifer ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 107-119
Author(s):  
Henrik Lundqvist ◽  
Öje Danell

The 51 reindeer herding districts in Sweden vary in productivity and prerequisites for reindeer herding. In this study we characterize and group reindeer herding districts based on relevant factors affecting reindeer productivity, i.e. topography, vegetation, forage value, habitat fragmentation and reachability, as well as season lengths, snow fall, ice-crust probability, and insect harassment, totally quantified in 15 variables. The herding districts were grouped into seven main groups and three single outliers through cluster analyses. The largest group, consisting of 14 herding districts, was further divided into four subgroups. The range properties of herding districts and groups of districts were characterized through principal component analyses. By comparisons of the suggested grouping of herding districts with existing administrative divisions, these appeared not to coincide. A new division of herding districts into six administrative sets of districts was suggested in order to improve administrative planning and management of the reindeer herding industry. The results also give possibilities for projections of alterations caused by an upcoming global climate change. Large scale investigations using geographical information systems (GIS) and meteorological data would be helpful for administrative purposes, both nationally and internationally, as science-based decision tools in legislative, economical, ecological and structural assessments. Abstract in Swedish / Sammanfattning: Multivariat gruppering av svenska samebyar baserat på renbetesmarkernas grundförutsettningar Svenska renskötselområdet består av 51 samebyar som varierar i produktivitet och förutsättningar för renskötsel. Vi analyserade variationen mellan samebyar med avseende på 15 variabler som beskriver topografi, vegetation, betesvärde, fragmentering av betesmarker, klimat, skareförekomst och aktivitet av parasiterande insekter och vi föreslår en indelning av samebyar i tio grupper. Den största gruppen, som bestod av 14 samebyar, delades vidare in i 4 undergrupper. Klusteranalyser med 4 olika linkage-varianter användes till att gruppera samebyarna. Principalkomponentsanalys användes för att kartlägga undersökta variabler och de resulterande samebygruppernas karaktär. Samebygrupperna följde inte länsgränser och tre samebyar föll ut som enskilda grupper. Denna undersökning ger underlag för jämförelser mellan samebyar med beaktande av likheter och olikheter i fråga om produktivitet och funktionella särdrag istället för länsgränser och historik. Vi föreslår en ny administrativ indelning i sex områden som skulle kunna fungera som ett alternativt underlag för planering och beslut som rör produktionsaspekter i rennäringen. Resultaten ger också underlag för förutsägelser av förändringar i samebyars produktionsförutsättningar till följd av klimatförändringar.


Sign in / Sign up

Export Citation Format

Share Document