scholarly journals Groundwater Vulnerability to Pollution in Kediri City, East Java Province, Indonesia

2021 ◽  
Vol 930 (1) ◽  
pp. 012012
Author(s):  
T Widodo ◽  
W Wilopo ◽  
A Setianto

Abstract Groundwater is a water resource that is still a mainstay for humans. The need for groundwater increases with the growth of population and the development of the industrial and agricultural sectors. The residents of Kediri City still use wells from shallow aquifers to fulfill their water needs. Shallow aquifers are prone to pollution due to the influence of shallow groundwater depths and human activities. The purpose of this study is to determine the vulnerability of groundwater pollution in Kediri City. Groundwater vulnerability was conducted by the GOD method (Groundwater Occurrence, Overlaying Lithology, and Depth of Groundwater) that consists of 3 parameters, namely the groundwater confinement, the type of overlying strata, and the depth of the groundwater level. The analysis results show that the level of groundwater vulnerability according to the GOD method in Kediri City consists of moderate and high classes. The western and the eastern part of Kediri City is classified as a high level of vulnerability. In contrast, in the middle of Kediri City, it tends to experience a moderate level of vulnerability.

2021 ◽  
Vol 13 (1) ◽  
pp. 626-638
Author(s):  
Yage Wu ◽  
Guang Yang ◽  
Lijun Tian ◽  
Xinchen Gu ◽  
Xiaolong Li ◽  
...  

Abstract The Manas River Basin (MRB), Northwest China, is an arid basin dependent on irrigation for agriculture, and human activities are believed to be the primary factor affecting the groundwater level fluctuations in this basin. Such fluctuations can have a significant adverse impact on the social economy, agricultural development, and natural environment of that region. This raises concerns regarding the sustainability of groundwater use. In this study, we used ArcGIS spatial interpolation and contrast coefficient variance analysis to analyse groundwater level, land-use change, and water resource consumption patterns from 2012 to 2019 in the plains of the MRB. The aim was to determine the main factors influencing the groundwater level and to provide a scientific basis for the rational development, utilisation, and management of water resources in this area. During the study period, the groundwater level decreased, increased, and then fluctuated with a gradually slowing downward trend; the decline ranged from −17.82 to −11.67 m during 2012–2019. Within a given year, groundwater levels declined from March/April to August/September, then rose from August/September to March/April, within a range of 0.29–19.05 m. Primary factors influencing the groundwater level included human activities (e.g., changes in land use, river regulation, irrigation, and groundwater exploitation) and natural causes (e.g., climate and weather anomalies). Human activities were the primary factors affecting groundwater level, especially land-use change and water resource consumption. These results provide a theoretical basis for the rational exploitation of groundwater and the optimisation of water resource management in this region.


Author(s):  
Baizhong Yan ◽  
Xiaomeng Li ◽  
Junliang Hou ◽  
Pan Bi

Abstract Based on the monitoring data of groundwater level, mining data and meteorological data from 1986 to 2015 in Cangzhou City, the change characteristics of depth of groundwater level were studied. On this basis, the non-parametric statistical test method (Mann-Kendall method) was used to study the trend of depth of groundwater level. Besides the principal component analysis method and grey correlation method were used to study groundwater influence factors. Finally, the multivariable time series model was used to predict the depth of groundwater level. The results showed that: In the past 30 years, influenced by human activities and meteorological changes, the groundwater flow field in 1986–2015 was generally move from southwest to northeast, the depth of groundwater level was increasing from the initial 3.26 to 4.06 m, with an annual increase rate of 0.027 m/a; the contribution rate of exploitation factor, precipitation factor, evaporation factor were 40, 20 and 40%; the fitting figure of the observed values and the predicted values were very good, with an average relative error of 7.73%. According to the prediction schemes, when the evaporation increases by 5%, and the agricultural exploitation decreases by 5%, the depth of groundwater will reach 3.39 m; when the evaporation increases by 10%, and the agricultural exploitation decreases by 10%, the depth of groundwater will reach 3.32 m. This study had important reference significance for regional groundwater treatment and rational utilization.


2019 ◽  
Vol 9 (6) ◽  
pp. 1133 ◽  
Author(s):  
Ewa Krogulec ◽  
Sebastian Zabłocki ◽  
Danuta Zadrożna

Groundwater management can be effectively implemented by assessment of groundwater vulnerability to pollution. The research was carried out in the Vistula River valley (Poland) in an area of shallow groundwater occurrence, defined as a Groundwater-Dependent Ecosystem area. The goal of this study was to identify the average, maximum, and minimum depths of the groundwater table for variant assessment of groundwater vulnerability to contamination. The variants correspond to the average vulnerability, the vulnerability during hydrogeological drought, and the vulnerability during the flood risk period. Theoretical and effective weights of vulnerability parameters were calculated using the DRASTIC method. Vulnerability maps constructed for the various vulnerability variants and by using different parameter weights show the spatial variability of the individual vulnerability classes. Due to the specifics of this protected area, the expected dependency between vulnerability index and chloride concentrations in the monitoring points was not found. Comparison showed strong dependency of water chemistry and the value of recharge, lithology of aquifer, and unsaturated zone. The research results confirm the need for variant vulnerability assessment to protect against floods or predict the effects of climate change.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Ratha Phok ◽  
Nandalal Kosgallana Duwage Wasantha ◽  
Weerakoon Sumana Bandara ◽  
Pitawala Herath Mudiyanselage Thalapitiye Ge ◽  
Dharmagunawardhane Hingure Arachchilage

AbstractGroundwater vulnerability assessment has become a crucial step in successfully protecting groundwater against pollution. An attempt of this study has been made to evaluate groundwater contamination risk using intrinsic vulnerability and land-uses in Vanathavillu, Kalpitiya and Katana area in Sri Lanka, using coupled DRASTIC with GIS as feasible methodology. The findings reveal that the groundwater in the areas under study falls under very low to high contamination risk. The higher risk of contamination has been identified in most of the Kalpitiya (about 82%) with the moderate along the beach in the west and next to Puttalam lagoon in the northeast and southeast. This is mainly due to pollution risk inherent with intense vegetable cultivation, over pumping, shallow groundwater tables and permeable sandy soil. Vanathavillu is under very low to moderate contamination risk, in which the moderate risk (about 13%) has especially been found the center, central southwest and west of the area. The relative less deep groundwater tables, possible seepage from the underlying limestone aquifer and less permeable red earth soil could be cause for the moderate risk in the area. Furthermore, results show that the Katana has low to moderately high groundwater contamination risk. Nitrate has a good agreement with the different pollution risk classes and that nitrate can be used as an indicator of aquifer degradation inherent with land-use activities in the coastal areas. Groundwater quality monitoring network should be set up to minimize the anthropogenic acts, particularly in high and moderate contamination risk zones.


2008 ◽  
Vol 363 (1499) ◽  
pp. 2011-2019 ◽  
Author(s):  
Edwin Hutchins

Innate cognitive capacities are orchestrated by cultural practices to produce high-level cognitive processes. In human activities, examples of this phenomenon range from everyday inferences about space and time to the most sophisticated reasoning in scientific laboratories. A case is examined in which chimpanzees enter into cultural practices with humans (in experiments) in ways that appear to enable them to engage in symbol-mediated thought. Combining the cultural practices perspective with the theories of embodied cognition and enactment suggests that the chimpanzees' behaviour is actually mediated by non-symbolic representations. The possibility that non-human primates can engage in cultural practices that give them the appearance of symbol-mediated thought opens new avenues for thinking about the coevolution of human culture and human brains.


2019 ◽  
Vol 68 (4) ◽  
pp. 355-372 ◽  
Author(s):  
Zoltán Zsolt Fehér ◽  
János Rakonczai

One of the undoubtedly recognizable consequences of the ongoing climate change in Hungary is the permanent change of groundwater depth, and consequently the sustainably reachable local water resources. These processes trigger remarkable changes in soil and vegetation. Thus, in research of sensitivity of any specific landscape to the varying climatic factors, monitoring and continuous evaluation of the water resources is inevitable. The presented spatiotemporal geostatistical cosimulation framework is capable to identify rearrangements of the subsurface water resources through water resource observations. Application of the Markov 2-type coregionalization model is based on the assumption, that presumably only slight changes have to be handled between two consecutive time instants, hence current parameter set can be estimated based on the spatial structures of prior and current dataset and previously identified parameters. Moreover, the algorithm is capable to take into consideration the significance of the geomorphologic settings on the subsurface water flow. Trends in water resource changes are appropriate indicators of certain areas climate sensitivity. The method is also suitable in determination of the main cause of the extraordinary groundwater discharges, like the one, observed from the beginning of the 1980’s in the Danube–Tisza Interfluve in Hungary.


2017 ◽  
Vol 1 (16) ◽  
Author(s):  
Jelena Golijanin ◽  
Golub Ćulafić ◽  
Slađana Petronić ◽  
Ognjen Matović

Analysis has studied northern part of Jahorina, Ravna Mountain, whose karst plateau presents wateraggregation surface for Paljanska Miljacka and Bistrica flows, which are used as water supply forSarajevo and Pale. This paper presented hydrogeological and hydrological characteristics of the areaand applied analyzes of other physical-geographic characteristics which are an essential indicator of thequality of groundwater. Applying various methods, we have obtained maps that shows different waysof groundwater pollution in karst. We analyzed spatial relationships and connections with individualsocio-geographical components. Thought correlation methods we obtained results which providedconclusions for possible measures against pollution of groundwater in karst and karst in general.


2021 ◽  
Vol 926 (1) ◽  
pp. 012047
Author(s):  
K Aribowo ◽  
W Wilopo ◽  
D H Barianto

Abstract The increasing population density can contaminate groundwater. So far, groundwater is still the primary source to fulfill clean water and drinking water in Muntilan, Salam, and Ngluwar Sub-District. Studies on groundwater vulnerability are essential to minimize the contamination risks as a piece of basic information for land use planning. This research aims to assess groundwater vulnerability in Muntilan, Salam, and Ngluwar Sub-District. The simple vertical vulnerability (SVV) method with GIS was selected to develop a groundwater vulnerability map. The parameters of this method consist of the type of soil/rock, the thickness of the water-unsaturated zone, and the recharge value. The results show that the research area can be divided into three vulnerability classes: very low, moderate, and high groundwater vulnerability. Very low groundwater vulnerability has a value of more than 70 with very high protection effectiveness. The class is distributed in Muntilan and Salam Sub-Districts. Moderate groundwater vulnerability has a value less than 35 to 65 with moderate protection effectiveness, and high groundwater vulnerability has a value ranging from 24 to 35 with low protection effectiveness. Both of the class is evenly distributed in Muntilan, Ngluwar and Salam Sub-Districts.


2021 ◽  
Author(s):  
Naota Hanasaki ◽  
Hikari Matsuda ◽  
Masashi Fujiwara ◽  
Yukiko Hirabayashi ◽  
Shinta Seto ◽  
...  

Abstract. Global hydrological models that include human activities are powerful tools for assessing water availability and use at global and continental scales. Such models are typically applied at a spatial resolution of 30 arcminutes (approximately 50 km). In recent years, some 5-arcminute (9-km) applications have been reported, but with numerous technical challenges, including the validation of calculations for more than a million grid cells and the conversion of simulation results into meaningful information relevant to water resource management. Here, the H08 global water resources model was applied in two ways to Kyushu Island in Japan at resolution of 1 arcminute (2 km), and the detailed results were compared. One method involved feeding interpolated global meteorological and geographic data into the default global model (GLB; in accordance with previous high-resolution applications). For the other method, locally derived boundary conditions were input to the localized model (LOC; this method can be easily extended and applied to other regions, at least across Japan). The results showed that GLB cannot easily reproduce the historical record, especially for variables related to human activities (e.g., dam operation and water withdrawal). LOC is capable of estimating natural and human water balance components at daily time scales and providing reliable information for regional water resource assessment. The results highlight the importance of improving data preparation and modeling methods to represent water management and use in hyper-resolution global hydrology simulations.


Sign in / Sign up

Export Citation Format

Share Document