scholarly journals Seasonal and Inter-Annual Variability of Groundwater and Their Responses to Climate Change and Human Activities in Arid and Desert Areas: A Case Study in Yaoba Oasis, Northwest China

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 303 ◽  
Author(s):  
Huanhuan Li ◽  
Yudong Lu ◽  
Ce Zheng ◽  
Xiaonan Zhang ◽  
Bao Zhou ◽  
...  

Climate change and human activities have profound effects on the characteristics of groundwater in arid oases. Analyzing the change of groundwater level and quantifying the contributions of influencing factors are essential for mastering the groundwater dynamic variation and providing scientific guidance for the rational utilization and management of groundwater resources. In this study, the characteristics and causes of groundwater level in an arid oasis of Northwest China were explored using the Mann–Kendall trend test, Morlet wavelet analysis, and principal component analysis. Results showed that the groundwater level every year exhibited tremendous regular characteristics with the seasonal exploitation. Meanwhile, the inter-annual groundwater level dropped continuously from 1982 to 2018, with a cumulative decline depth that exceeded 12 m, thereby causing the cone of depression. In addition, the monthly groundwater level had an evident cyclical variation on the two time scales of 17–35 and 7–15 months, and the main periodicity of monthly level was 12 months. Analysis results of the climatic factors from 1954 to 2018 observed a significant warming trend in temperature, an indistinctive increase in rainfall, an inconspicuous decrease in evaporation, and an insignificant reduction in relative humidity. The human factors such as exploitation amount, irrigated area, and population quantity rose substantially since the development of the oasis in the 1970s. In accordance with the quantitative calculation, human activities were decisive factors on groundwater level reduction, accounting for 87.79%. However, climate change, including rainfall and evaporation, which contributed to 12.21%, still had the driving force to change the groundwater level in the study area. The groundwater level of Yaoba Oasis has been greatly diminished and the ecological environment has deteriorated further due to the combined effect of climate change and human activities.

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1237 ◽  
Author(s):  
Caihong Hu ◽  
Li Zhang ◽  
Qiang Wu ◽  
Shan-e-hyder Soomro ◽  
Shengqi Jian

Runoff reduction in most river basins in China has become a hotpot in recent years. The Gushanchuan river, a primary tributary of the middle Yellow river, Northern China, showed a significant downward trend in the last century. Little is known regarding the relative contributions of changing environment to the observed hydrological trends and response on the runoff generation process in its watershed. On the basis of observed hydrological and meteorological data from 1965–2010, the Mann-Kendall trend test and climate elasticity method were used to distinguish the effects of climate change and human activities on runoff in the Gushanchuan basin. The results indicate that the runoff in the Gushanchuan Basin has experienced significant declines as large as 77% from 1965 to 2010, and a mutation point occurred around 1997; the contribution rate of climate change to runoff change is 12.9–15.1%, and the contribution rate of human activities to runoff change is 84.9–87.1%. Then we divided long-term data sequence into two stages around the mutation point, and analyzed runoff generation mechanisms based on land use and cover changes (LUCC). We found that the floods in the Gushanchuan Basin were still dominated by Excess-infiltration runoff, but the proportion in 1965–1997 and 1998–2010 decreased gradually (68.46% and 45.83% in turn). The proportion of Excess-storage runoff and Mixed runoff has increased, which means that the runoff is made up of more runoff components. The variation law of the LUCC indicates that the forest area increased by 49.61%, the confluence time increased by 50.42%, and the water storage capacity of the watershed increased by 30.35%.


2014 ◽  
Author(s):  
Peng Li ◽  
Jianhua Xu ◽  
Zhongsheng Chen ◽  
Benfu Zhao

Based on the hydrological and meteorological data of the upper reaches of Shiyang River basin in Northwest China from 1960 to 2009, this paper analyzed the change in runoff and its related climatic factors, and estimated the contribution of climate change and human activity to runoff change by using the moving T test, cumulative analysis of anomalies and multiple regression analysis. The results showed that temperature revealed a significant increasing trend, and potential evaporation capacity decreased significantly, while precipitation increased insignificantly in the past recent 50 years. Although there were three mutations in 1975, 1990 and 2002 respectively, runoff presented a slight decreasing trend in the whole period. The contributions of climate change and human activity to runoff change during the period of 1976-2009 were 45% and 55% respectively.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2869
Author(s):  
Xiaohui Pan ◽  
Weishi Wang ◽  
Tie Liu ◽  
Yue Huang ◽  
Philippe De Maeyer ◽  
...  

In the past few decades, the shrinkage of the Aral Sea is one of the biggest ecological catastrophes caused by human activity. To quantify the joint impact of both human activities and climate change on groundwater, the spatiotemporal groundwater dynamic characteristics in the Amu Darya Delta of the Aral Sea from 1999 to 2017 were analyzed, using the groundwater level, climate conditions, remote sensing data, and irrigation information. Statistics analysis was adopted to analyze the trend of groundwater variation, including intensity, periodicity, spatial structure, while the Pearson correlation analysis and principal component analysis (PCA) were used to quantify the impact of climate change and human activities on the variabilities of the groundwater level. Results reveal that the local groundwater dynamic has varied considerably. From 1999 to 2002, the groundwater level dropped from −189 cm to −350 cm. Until 2017, the groundwater level rose back to −211 cm with fluctuation. Seasonally, the fluctuation period of groundwater level and irrigation water was similar, both were about 18 months. Spatially, the groundwater level kept stable within the irrigation area and bare land but fluctuated drastically around the irrigation area. The Pearson correlation analysis reveals that the dynamic of the groundwater level is closely related to irrigation activity within the irrigation area (Nukus: −0.583), while for the place adjacent to the Aral Sea, the groundwater level is closely related to the Large Aral Sea water level (Muynak: 0.355). The results of PCA showed that the cumulative contribution rate of the first three components exceeds 85%. The study reveals that human activities have a great impact on groundwater, effective management, and the development of water resources in arid areas is an essential prerequisite for ecological protection.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1078
Author(s):  
Yingjie Cui ◽  
Zilong Liao ◽  
Yongfu Wei ◽  
Xiaomin Xu ◽  
Yifan Song ◽  
...  

The response mechanism of groundwater to climate change and human activities in cities within arid and semi-arid regions, such as the Urban Planning Area of Baotou City (UPABC), northern China, is a complicated problem to understand. We analyzed the climate change relationships, including precipitation and temperature, and analyzed changes in human activities, such as groundwater consumption, and then statistically analyzed the main factors affecting groundwater depth. Furthermore, cross-wavelet and wavelet coherence methods were used to analyze the response relationship and hysteresis of groundwater depth to precipitation to better understand the groundwater depth response law. The results showed that the annual precipitation in the UPABC reduction rate was 3.3 mm/10 yr, and the annual average temperature increase rate was 0.43 °C/10 yr, from 1981 to 2017. The unconfined water decrease rate was 0.50 m/yr, and the confined water decrease rate was 0.7 m/yr. The unconfined and confined water depths were affected by precipitation and groundwater exploitation, respectively, with correlation coefficients of 0.58 and 0.57, respectively. The hysteresis of groundwater depth to precipitation was about 9–14 months. However, changes in groundwater depth, especially confined water depth, were greatly affected by groundwater exploitation. This reflected the imbalance in consumption and recharges in the UPABC, highlighting the long-term risk in areas relying on access to this resource. Therefore, arid inland zones of northern China, such as the UPABC, should pay more attention to the rational development of groundwater and strengthen the management and protection of groundwater resources.


2021 ◽  
Author(s):  
Andreas Wunsch ◽  
Tanja Liesch ◽  
Stefan Broda

<p>Clear signs of climate stress on groundwater resources have been observed in recent years even in generally water-rich regions such as Germany. Severe droughts, resulting in decreased groundwater recharge, led to declining groundwater levels in many regions and even local drinking water shortages have occurred in past summers. We investigate how climate change will directly influence the groundwater resources in Germany until the year 2100. For this purpose, we use a machine learning groundwater level forecasting framework, based on Convolutional Neural Networks, which has already proven its suitability in modelling groundwater levels. We predict groundwater levels on more than 120 wells distributed over the entire area of Germany that showed strong reactions to meteorological signals in the past. The inputs are derived from the RCP8.5 scenario of six climate models, pre-selected and pre-processed by the German Meteorological Service, thus representing large parts of the range of the expected change in the next 80 years. Our models are based on precipitation and temperature and are carefully evaluated in the past and only wells with models reaching high forecasting skill scores are included in our study. We only consider natural climate change effects based on meteorological changes, while highly uncertain human factors, such as increased groundwater abstraction or irrigation effects, remain unconsidered due to a lack of reliable input data. We can show significant (p<0.05) declining groundwater levels for a large majority of the considered wells, however, at the same time we interestingly observe the opposite behaviour for a small portion of the considered locations. Further, we show mostly strong increasing variability, thus an increasing number of extreme groundwater events. The spatial patterns of all observed changes reveal stronger decreasing groundwater levels especially in the northern and eastern part of Germany, emphasizing the already existing decreasing trends in these regions</p>


2013 ◽  
Vol 28 (18) ◽  
pp. 4854-4864 ◽  
Author(s):  
Wen Dong ◽  
Baoshan Cui ◽  
Zhihui Liu ◽  
Kejiang Zhang

2021 ◽  
Vol 13 (1) ◽  
pp. 626-638
Author(s):  
Yage Wu ◽  
Guang Yang ◽  
Lijun Tian ◽  
Xinchen Gu ◽  
Xiaolong Li ◽  
...  

Abstract The Manas River Basin (MRB), Northwest China, is an arid basin dependent on irrigation for agriculture, and human activities are believed to be the primary factor affecting the groundwater level fluctuations in this basin. Such fluctuations can have a significant adverse impact on the social economy, agricultural development, and natural environment of that region. This raises concerns regarding the sustainability of groundwater use. In this study, we used ArcGIS spatial interpolation and contrast coefficient variance analysis to analyse groundwater level, land-use change, and water resource consumption patterns from 2012 to 2019 in the plains of the MRB. The aim was to determine the main factors influencing the groundwater level and to provide a scientific basis for the rational development, utilisation, and management of water resources in this area. During the study period, the groundwater level decreased, increased, and then fluctuated with a gradually slowing downward trend; the decline ranged from −17.82 to −11.67 m during 2012–2019. Within a given year, groundwater levels declined from March/April to August/September, then rose from August/September to March/April, within a range of 0.29–19.05 m. Primary factors influencing the groundwater level included human activities (e.g., changes in land use, river regulation, irrigation, and groundwater exploitation) and natural causes (e.g., climate and weather anomalies). Human activities were the primary factors affecting groundwater level, especially land-use change and water resource consumption. These results provide a theoretical basis for the rational exploitation of groundwater and the optimisation of water resource management in this region.


2011 ◽  
Vol 8 (3) ◽  
pp. 5999-6030 ◽  
Author(s):  
Z. Yang ◽  
Y. X. Zhou ◽  
J. Wenninger ◽  
S. Uhlenbrook

Abstract. Identifying the causes (climate vs. human activities) for hydrological variability is a major challenge in hydrology. This paper examines the flow regime shifts, changes in the climatic variables such as precipitation, evaporation, temperature, and crop area in the semi-arid Hailiutu catchment in the middle section of the Yellow River by performing several statistical analyses. The Pettitt test, cumulative sum charts (CUSUM), regime shift index (RSI) method, and harmonic analysis were carried out on annual, monthly, and daily discharges. Four major shifts in the flow regime have been detected in 1968, 1986, 1992 and 2001. Characteristics of the flow regime were analyzed in the five periods: 1957–1967, 1968–1985, 1986–1991, 1992–2000, and 2001–2007. From 1957 to 1967, the flow regime reflects quasi natural conditions with high variability and larger amplitude of 6 months periodic fluctuations. The river flow had been affected by the construction of two reservoirs in the period 1968–1985. In the period of 1986–1991, the river discharge decreased due to the combined influence of river diversions and increase of groundwater extractions for irrigation. In the fourth period of 1992–2000, the river discharge reached lowest flow values and variations corresponding to a large increase in crop area. The flow regime recovered, but not yet to natural status in the fifth period of 2001–2007. Climatic factors are not responsible for all these changes in the flow regime, but the changes are corresponding well to human activities.


2018 ◽  
Vol 10 (3) ◽  
pp. 863 ◽  
Author(s):  
Dandan Zhao ◽  
Hong He ◽  
Wen Wang ◽  
Lei Wang ◽  
Haibo Du ◽  
...  

Wetlands in the mid- and high-latitudes are particularly vulnerable to environmental changes and have declined dramatically in recent decades. Climate change and human activities are arguably the most important factors driving wetland distribution changes which will have important implications for wetland ecological functions and services. We analyzed the importance of driving variables for wetland distribution and investigated the relative importance of climatic factors and human activity factors in driving historical wetland distribution changes. We predicted wetland distribution changes under climate change and human activities over the 21st century using the Random Forest model in a mid- and high-latitude region of Northeast China. Climate change scenarios included three Representative Concentration Pathways (RCPs) based on five general circulation models (GCMs) downloaded from the Coupled Model Intercomparison Project, Phase 5 (CMIP5). The three scenarios (RCP 2.6, RCP 4.5, and RCP 8.5) predicted radiative forcing to peak at 2.6, 4.5, and 8.5 W/m2 by the 2100s, respectively. Our results showed that the variables with high importance scores were agricultural population proportion, warmness index, distance to water body, coldness index, and annual mean precipitation; climatic variables were given higher importance scores than human activity variables on average. Average predicted wetland area among three emission scenarios were 340,000 ha, 123,000 ha, and 113,000 ha for the 2040s, 2070s, and 2100s, respectively. Average change percent in predicted wetland area among three periods was greatest under the RCP 8.5 emission scenario followed by RCP 4.5 and RCP 2.6 emission scenarios, which were 78%, 64%, and 55%, respectively. Losses in predicted wetland distribution were generally around agricultural lands and expanded continually from the north to the whole region over time, while the gains were mostly associated with grasslands and water in the most southern region. In conclusion, climatic factors had larger effects than human activity factors on historical wetland distribution changes and wetland distributions were predicted to decline remarkably over time under climate change scenarios. Our findings have important implications for wetland resource management and restoration because predictions of future wetland changes are needed for wetlands management planning.


Sign in / Sign up

Export Citation Format

Share Document