scholarly journals A neural network-based prediction model in water monitoring networks

Author(s):  
Xiaohong Ji ◽  
Ying Pan ◽  
Guoqing Jia ◽  
Weidong Fang

Abstract To improve the prediction accuracy of ammonia nitrogen in water monitoring networks, the combination of a bio-inspired algorithm and back propagation neural network (BPNN) has often been deployed. However, due to the limitations of the bio-inspired algorithm, it would also fall into the local optimal. In this paper, the seagull optimization algorithm (SOA) was used to optimize the structure of BPNN to obtain a better prediction model. Then, an improved SOA (ISOA) was proposed, and the common functional validation method was used to verify its optimization performance. Finally, the ISOA was applied to improve BPNN, which is known as the improved seagull optimization algorithm–back propagation (ISOA–BP) model. The simulation results showed that the prediction accuracy of ammonia nitrogen was greatly improved and the proposed model can be better applied to the prediction of complex water quality parameters in water monitoring networks.

2020 ◽  
Vol 63 (4) ◽  
pp. 1071-1077
Author(s):  
Chenyang Sun ◽  
Lusheng Chen ◽  
Yinian Li ◽  
Hao Yao ◽  
Nan Zhang ◽  
...  

HighlightsWe propose five spraying parameters according to the characteristics of pig carcasses in the spray-chilling process.A prediction model for pig carcass weight loss, based on a genetic algorithm back-propagation neural network, is proposed to reveal the relationship between weight loss and spraying parameters.To study the effects of various spraying parameters on weight loss, an automatic spray-chilling device was designed, which can modify up to five spraying parameters.Abstract. Because the weight loss of a pig carcass in the spray-chilling process is easily affected by the spraying frequency and duration, a prediction model for weight loss based on a genetic algorithm (GA) back-propagation (BP) neural network is proposed in this article. With three-way crossbred pig carcasses selected as the test materials, the duration and time interval of high-frequency spraying, the duration and time interval of low-frequency spraying, and the duration of a single spray were selected as inputs to the network model. The weight and threshold of the network were then optimized by the GA. The prediction model for pig carcass weight loss established by the GA BP neural network yielded a correlation coefficient of R = 0.99747 between the network output value of the test samples and the target value. Weight loss prediction by the model is feasible and allows better expression of the nonlinear relationship between weight loss and the main controlling factors. The results can be a reference for chilled meat production. Keywords: BP neural network, Genetic algorithm, Pig carcass, Predictive model, Weight loss


2014 ◽  
Vol 668-669 ◽  
pp. 994-998
Author(s):  
Jin Ting Ding ◽  
Jie He

This study aims at providing a back propagation-artificial neural network (BP-ANN) model on forecasting the water quality change trend of Qiantang River basin. To achieve this goal, a three-layer (one input layer, one hidden layer, and one output layer) BP-ANN with the LM regularization training algorithm was used. Water quality variables such as pH value, dissolved oxygen, permanganate index and ammonia-nitrogen was selected as the input data to obtain the output of the neural network. The ANN structure with 17 hidden neurons obtained the best selection. The comparison between the original measured and forecast values of the ANN model shows that the relative errors, with a few exceptions, were lower than 9%. The results indicated that the BP neural network can be satisfactorily applied to forecast precise water quality parameters and is suitable for pre-alarm of water quality trend.


2020 ◽  
Vol 12 (4) ◽  
pp. 1550 ◽  
Author(s):  
Xingdong Zhao ◽  
Jia’an Niu

A back-propagation neural network prediction model with three layers and six neurons in the hidden layer is established to overcome the limitation of the equivalent linear overbreak slough (ELOS) empirical graph method in estimating unplanned ore dilution. The modified stability number, hydraulic radius, average deviation of the borehole, and powder factor are taken as input variables and the ELOS of quantified unplanned ore dilution as the output variable. The training and testing of the model are performed using 120 sets of data. The average fitting degree r2 of the prediction model is 0.9761, the average mean square error is 0.0001, and the relative error of the prediction is approximately 6.2%. A method of calculating the unplanned ore dilution is proposed and applied to a test stope of the Sandaoqiao lead–zinc mine. The calculated unplanned ore dilution is 0.717 m, and the relative error (i.e., the difference between calculation and measurement of 0.70 m) is 2.4%, which is better than the relative errors for the empirical graph method and numerical simulation (giving dilution values of 0.8 and 0.55 m, respectively). The back-propagation neural network prediction model is confirmed to predict the unplanned ore dilution in real applications.


Sign in / Sign up

Export Citation Format

Share Document