scholarly journals Consumptive water footprints, water use efficiencies and productivities of rice under alternate wetting and drying for Kharagpur, West Bengal, India

Author(s):  
A. Biswas ◽  
D. R. Mailapalli ◽  
N. S. Raghuwanshi

Abstract An experimental study was carried out with medium duration rice variety (IR 36) during kharif and rabi seasons of 2015/16 and 2016/17 to investigate the effect of alternate wetting and drying (AWD) practice on water use efficiency, productivity, and consumptive water footprints of rice. The performance of AWD practice was compared with the conventionally (CON) irrigated rice using non-weighing lysimeters. The study resulted that by managing the alternate wetting and drying up to 15 cm below the ground level, a significant reduction in water input (26–29% in kharif and 22–27% in rabi season) could be achieved under AWD. A reduction in evapotranspiration (about 6% in both kharif and rabi seasons) was also observed under AWD. Reduction in consumptive water footprint (about 2–3% in kharif and 2–5% in rabi) was obtained under AWD. Reductions in blue water footprints (7% in kharif and 4–5% in rabi) was also observed under AWD. On average, crop water use efficiency was significantly enhanced by 27–33% and 20–29% in the respective kharif and rabi seasons under AWD practice. Significant improvement in total water productivity by 29–37% and 23–35% in the respective two seasons exhibited the superiority of AWD over CON during the two years of field experiments.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yunbo Zhang ◽  
Qiyuan Tang ◽  
Shaobing Peng ◽  
Danying Xing ◽  
Jianquan Qin ◽  
...  

One of the technology options that can help farmers cope with water scarcity at the field level is alternate wetting and drying (AWD). Limited information is available on the varietal responses to nitrogen, AWD, and their interactions. Field experiments were conducted at the International Rice Research Institute (IRRI) farm in 2009 dry season (DS), 2009 wet season (WS), and 2010 DS to determine genotypic responses and water use efficiency of rice under two N rates and two water management treatments. Grain yield was not significantly different between AWD and continuous flooding (CF) across the three seasons. Interactive effects among variety, water management, and N rate were not significant. The high yield was attributed to the significantly higher grain weight, which in turn was due to slower grain filling and high leaf N at the later stage of grain filling of CF. AWD treatments accelerated the grain filling rate, shortened grain filling period, and enhanced whole plant senescence. Under normal dry-season conditions, such as 2010 DS, AWD reduced water input by 24.5% than CF; however, it decreased grain yield by 6.9% due to accelerated leaf senescence. The study indicates that proper water management greatly contributes to grain yield in the late stage of grain filling, and it is critical for safe AWD technology.


Author(s):  
P. Kunjammal ◽  
Subbalakshmi Lokanadhan ◽  
S. Murali Krishnasamy ◽  
D. Jawahar ◽  
K. Ganesamurthy

A field experiment was carried out at the Agricultural College & Research Institute, Coimbatore in research farm during samba season 2018-2019 to assess the water use  and its efficiency in different rice varieties comprising aromatic rice, land races, popular cultivars and recent released variety under modified irrigation practices. The experimental design was a split plot with three replications. The main plots with contionous flooding and modified irrigation practices and  sub plots with eight varieties as treatments viz., (S1) Kalanamak, (S2) Jeeragasamba, (S3) Kavuni, (S4) Mappilaisamba, (S5)Improved TNAU White ponni, (S6) Bhavani, (S7) CO 51 and (S8) CO 52. Irrigation practice of alternate wetting and drying, monitoring with field tube registered lower consumption of water (900 mm) with less number of irrigation(14), higher water use efficiency (7.3 kg ha-1mm-1) and water productivity (1682 lit.kg-1) in rice, compared to flood irrigation practices. In Sub plot with different rice varieties viz., aromatic, landraces, popular cultivar and recently released rice variety among these varieties the recent released variety CO52 recorded higher grain yield (6.6 t ha-1), compared to other varieties.


2016 ◽  
Vol 42 (7) ◽  
pp. 1026 ◽  
Author(s):  
Guang CHU ◽  
Ming-Fei ZHAN ◽  
Kuan-Yu ZHU ◽  
Zhi-Qin WANG ◽  
Jian-Chang YANG

1970 ◽  
Vol 6 (2) ◽  
pp. 409-414 ◽  
Author(s):  
MMH Oliver ◽  
MSU Talukder ◽  
M Ahmed

A field experiment was conducted at the Bangladesh Agricultural University (BAU) to find out possible effects of alternate wetting and drying irrigation (AWDI) on the yield, water use and water use efficiency (WUE) of Boro rice. The experimental layout was furnitured using split-plot design (SPD) with two modern varieties (MV) of rice viz. BRRIdhan 28 and BRRIdhan 29, which received four irrigation treatments randomly and was replicated thrice. The treatments ranged from continuous submergence (T1) of the field to a number of delayed irrigations (T2, T3 and T4) denoting application of 5 cm irrigation water when water level in the perforated PVC pipe fell 10, 20 and 30 cm below ground level (G.L.), respectively. The study revealed that treatment T1 attributed by the highest total water use (122.2 cm) and the lowest WUE (58.53 kg/ha/cm) produced the highest grain yield (6.86 t/ha). Treatment T2, on the contrary, gave the second highest yield (6.58 t/ha) and consequently the second highest WUE (69.48 kg/ha/cm) indicating quite a large water saving (15 cm) compared to treatment T1. The yields in treatments T3 (6.27 t/ha) and T4 (5.86 t/ha) were significantly lower at 1% level of significance compared to that of treatment T1. No significant effect was found either for the treatment or for the varieties on the number of effective and total tillers hill-1 nor did they affect 1000 grain weight. Reduced plant height, no. of effective tillers hill-1, grain yield, straw yield, biological yield and harvest index were found with the increasing water stress. Key words: Alternate wetting and drying irrigation; Boro rice; Yield; Water use efficiency DOI: 10.3329/jbau.v6i2.4841 J. Bangladesh Agril. Univ. 6(2): 409-414, 2008


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1290
Author(s):  
Taia A. Abd El-Mageed ◽  
Eman E. Belal ◽  
Mohamed O. A. Rady ◽  
Shimaa A. Abd El-Mageed ◽  
Elsayed Mansour ◽  
...  

Drought is one of the major threats to global food security. Biochar use in agriculture has received much attention and improving it through chemical modification offers a potential approach for enhancing crop productivity. There is still limited knowledge on how acidified biochar influences soil properties, and consequently its influences on the agricultural productivity of drought stressed plants. The water use efficiency (I-WUE) of drought stressed faba beans was investigated through the effects of acidified biochar (ACBio) (a 3:100 (w:w) combination of citric acid and biochar) on soil properties, growth, productivity, nutrient uptake, water productivity (WP), and irrigation. Two field experiments (2016/2017 and 2017/2018) were conducted in saline soil (ECe, 7.2 dS m−1) on faba been plants grown under three irrigation regimes (i.e., 100, 80, and 60% of crop evapotranspiration (ETc)) combined with three levels of ACBio (0, 5, and 10 t ha−1). Plants exposed to water stress presented a significant decrease in plant height, dry matter, leave area, chlorophyll content (SPAD), the quantum efficiency of photosystem II (Fv/Fm, Fv/F0, and PI), water status (membrane stability index and relative water content), and seed yield. Acidified biochar soil incorporation improved soil properties (chemical and physical), plant growth, physiological responses, WP, I-WUE, and contents of N, P, K, and Ca. Results revealed that the application of ACBio at 10 t ha−1 and 5 t ha−1 significantly increased seed yield by 38.7 and 25.8%, respectively, compared to the control. Therefore, ACBio incorporation may find application in the future as a potential soil amendment for improving growth and productivity of faba bean plants under deficit irrigation.


2018 ◽  
Vol 10 (11) ◽  
pp. 4317 ◽  
Author(s):  
Maisa’a Shammout ◽  
Tala Qtaishat ◽  
Hala Rawabdeh ◽  
Muhammad Shatanawi

The Jordan Valley is the prime irrigated agricultural area in Jordan which suffers shortage of water putting severe limitation on water allocation to farmers. To alleviate the problem, deficit irrigation was proposed for some vegetables such as bell pepper. Two field experiments in two growing seasons were conducted using bell pepper (Capsicum Annuum L.) to assess the effect of deficit irrigation on yield, water use efficiency (WUE), and water productivity (WP). The treatments were three irrigation levels: 100% (T1), 80% (T2), and 60% (T3) of the calculated crop evapotranspiration (ETc) using class A pan method. A cost–benefit analysis was carried out to determine the best economically suitable season for crop growth. The yields in both seasons were higher under T1, but there was no difference in WUE and WP between T1 and T2. The yield, WUE, and WP for T3 were significantly lower than for T1 and T2. Therefore, it is recommended to irrigate at 80% of ET. The best results were obtained for the total gross margin and the net present value in the winter season. Using deficit irrigation reduces water usage without significant yield loss, meanwhile maintaining relatively high WUE and supporting the sustainability of agriculture in the Jordan Valley.


Sign in / Sign up

Export Citation Format

Share Document