Molecular Weight Distributions of Soluble Organic Matter in Various Secondary and Tertiary Effluents

1987 ◽  
Vol 19 (3-4) ◽  
pp. 529-538 ◽  
Author(s):  
Gary L. Amy ◽  
Curtis W. Bryant ◽  
Mosen Belyani

Differences in the nature of soluble organic matter were measured for various full-scale wastewater treatment processes. Conventional activated sludge, pure oxygen activated sludge, biofiltration, granular activated carbon, and tertiary sand filtration were evaluated. Effluent soluble organic matter was analyzed by ultrafiltration for the apparent molecular weight distribution of soluble organic carbon and UV-absorbing material. The effects of annual season, secondary treatment process, and tertiary treatment process upon the properties of the effluent soluble organic matter were statistically significant at the 99% level. Effluent properties from the various treatments were sufficiently different to support the concept of the selection of appropriate treatments to minimize the effluent concentration of specific fractions of the soluble organic material as required for specific water reuse applications.

2011 ◽  
Vol 63 (4) ◽  
pp. 733-740 ◽  
Author(s):  
E. Sahar ◽  
M. Ernst ◽  
M. Godehardt ◽  
A. Hein ◽  
J. Herr ◽  
...  

The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8–10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin – at an MLSS of 6–9 g/L – showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.


2008 ◽  
Vol 57 (2) ◽  
pp. 161-165 ◽  
Author(s):  
Kyung-Nan Min ◽  
Sarina J. Ergas ◽  
Anna Mermelstein

This study investigated the impact of dissolved oxygen (DO) concentration on membrane filtering resistance, soluble organic matter (SOM) and extracellular polymeric substance (EPS) characteristics in a membrane bioreactor (MBR). A laboratory-scale MBR was operated under DO limited (0.2 mg L−1 DO) and fully aerobic (3.7 and 5.4 mg L−1 DO) conditions. Membrane filtering resistance was determined for the mixed liquor suspended solids (MLSS) and for resuspended microbial biomass after removing SOM. Regardless of the DO concentration, the cake resistance (Rc) was approximately 95 percent of the total resistance (Rt). The membrane cake resistance was found to decrease significantly after removing the SOM. The total resistance caused by the resuspended biomass was 29 percent of that caused by the MLSS under DO limited conditions, while the total resistance caused by resuspended biomass was 41 to 48 percent of that caused by the MLSS under fully aerobic conditions. Under DO limited conditions, SOM in the MLSS contained a larger amount of high molecular weight compounds, leading to higher cake resistance than under fully aerobic conditions. There was significant variation in the molecular weight fractions of the EPS, with no clear relationship with DO concentration. There was also no distinct relationship between membrane filtering resistance and molecular weight fraction of the EPS.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 339-350 ◽  
Author(s):  
D. Orhon ◽  
N. Artan ◽  
Y. Cimşit

The soluble effluent COD of a well operated activated sludge plant is likely to be composed almost entirely of organic matter generated by microbial activity. There is evidence to show that a significant portion of this soluble organic matter is non-degradable and may be due to similar microbial mechanisms. A model for the formation of these soluble residual products, (SRP), is propose'd, relating the SRP formation to the hydrolysis of non-viable cellular materials in the reactor. The set of equations describing the model are successfully calibrated and verified for a set of representative experimental data derived from Sequencing Batch Reactors. The model is found to explain and predict COD accumulation at the end of each cycle of these activated sludge systems.


2014 ◽  
Vol 70 (10) ◽  
pp. 1709-1716 ◽  
Author(s):  
C. Remy ◽  
M. Boulestreau ◽  
B. Lesjean

For improved exploitation of the energy content present in the organic matter of raw sewage, an innovative concept for treatment of municipal wastewater is tested in pilot trials and assessed in energy balance and operational costs. The concept is based on a maximum extraction of organic matter into the sludge via coagulation, flocculation and microsieving (100 μm mesh size) to increase the energy recovery in anaerobic sludge digestion and decrease aeration demand for carbon mineralisation. Pilot trials with real wastewater yield an extraction of 70–80% of total chemical oxygen demand into the sludge while dosing 15–20 mg/L Al and 5–7 mg/L polymer with stable operation of the microsieve and effluent limits below 2–3 mg/L total phosphorus. Anaerobic digestion of the microsieve sludge results in high biogas yields of 600 NL/kg organic dry matter input (oDMin) compared to 430 NL/kg oDMin for mixed sludge from a conventional activated sludge process. The overall energy balance for a 100,000 population equivalent (PE) treatment plant (including biofilter for post-treatment with full nitrification and denitrification with external carbon source) shows that the new concept is an energy-positive treatment process with comparable effluent quality than conventional processes, even when including energy demand for chemicals production. Estimated operating costs for electricity and chemicals are in the same range for conventional activated sludge processes and the new concept.


Sign in / Sign up

Export Citation Format

Share Document