Practical Guide to Determine the Impact of Radon and Other Radionuclides on Water Treatment Processes

1992 ◽  
Vol 26 (5-6) ◽  
pp. 1255-1264
Author(s):  
K. L. Martins

During treatment of groundwater, radon is often coincidentally removed by processes typically used to remove volatile organic compounds (VOCs)-for example, processes such as liquid-phase granular activated carbon (LGAC) adsorption and air stripping with vapor-phase carbon (VGAC). The removal of radon from drinking water is a positive benefit for the water user; however, the accumulation of radon on activated carbon may cause radiologic hazards for the water treatment plant operators and the spent carbon may be considered a low-level radioactive waste. To date, most literature on radon removal by water treatment processes was based on bench- or residential-scale systems. This paper addresses the impact of radon on municipal and industrial-scale applications. Available data have been used todevelop graphical methods of estimating the radioactivity exposure rates to facility operators and determine the fate of spent carbon. This paper will allow the reader to determine the potential for impact of radon on the system design and operation as follows.Estimate the percent removal of radon from water by LGAC adsorbers and packed tower air strippers. Also, a method to estimate the percent removal of radon by VGAC used for air stripper off-gas will be provided.Estimate if your local radon levels are such that the safety guidelines, suggested by USEPA (United States Environmental Protection Agency), of 25 mR/yr (0.1 mR/day) for radioactivity exposure may or may not be exceeded.Estimate the disposal requirements of the waste carbon for LGAC systems and VGAC for air stripper “Off-Gas” systems. Options for dealing with high radon levels are presented.

2017 ◽  
Vol 18 (4) ◽  
pp. 1261-1269
Author(s):  
Zhiling Wu ◽  
Hongbin Chen

Abstract Invertebrate removal by traditional biological activated carbon (tra-BAC) and pre-BAC treatment processes was investigated in a full-scale water treatment plant. The results showed that invertebrate reproduction occurred in both BAC filters, but the invertebrate abundance in the finished water processed by tra-BAC was about 15 times greater than that processed using the pre-BAC process. In the pre-BAC process, the sand filter was placed after the BAC filter, and sand filtration removed most of the invertebrates, with an average removal efficiency of 91.1%. However, the pre-BAC filter, which was positioned behind the sedimentation tank, needed to be backwashed more frequently than the tra-BAC filter because of the high turbidity of the inlet water. The frequent backwashing reduced the biomass on the activated carbon and decreased the invertebrate reproductive rate. The results of this study are helpful for evaluating the pre-BAC treatment process in drinking water treatment plants.


2002 ◽  
Vol 2 (1) ◽  
pp. 233-240 ◽  
Author(s):  
J. Cromphout ◽  
W. Rougge

In Harelbeke a Water Treatment Plant with a capacity of 15,000 m3/day, using Schelde river water has been in operation since April 1995. The treatment process comprises nitrification, dephosphatation by direct filtration, storage into a reservoir, direct filtration, granular activated carbon filtration and disinfection. The design of the three-layer direct filters was based on pilot experiments. The performance of the plant during the five years of operation is discussed. It was found that the removal of atrazin by activated carbon depends on the water temperature.


1996 ◽  
Vol 68 (7) ◽  
pp. 1179-1186 ◽  
Author(s):  
Stephen D. J. Booth ◽  
Daniel Urfer ◽  
Gerard Pereira ◽  
Karl J. Caber

Author(s):  
Nguyet Thi-Minh Dao ◽  
The-Anh Nguyen ◽  
Viet-Anh Nguyen ◽  
Mitsuharu Terashima ◽  
Hidenari Yasui

The occurrence of pesticides even at low concentrations in drinking water sources might induce potential risks to public health. This study aimed to investigate the removal mechanisms of eight pesticides by the nitrifying expanded-bed filter using biological activated carbon media at the pretreatment of a drinking water plant. The field analysis demonstrated that four pesticides Flutolanil, Buprofezin, Chlorpyrifos, and Fenobucard, were removed at 82%, 55%, 54%, and 52% respectively, while others were not significantly removed. Under controlled laboratory conditions with continuous and batch experiments, the adsorption onto the biological activated carbon media was demonstrated to be the main removal pathway of the pesticides. The contribution of microorganisms to the pesticide removals was rather limited. The pesticide removals observed in the field reactor was speculated to be the adsorption on the suspended solids presented in the influent water. The obtained results highlighted the need to apply a more efficient and cost-effective technology to remove the pesticide in the drinking water treatment process. Keywords: biological activated carbon; drinking water treatment; nitrifying expanded-bed filter; pesticide removal.


2015 ◽  
Vol 46 (4) ◽  
pp. 291-335 ◽  
Author(s):  
M. Pivokonsky ◽  
J. Naceradska ◽  
I. Kopecka ◽  
M. Baresova ◽  
B. Jefferson ◽  
...  

2009 ◽  
Vol 60 (3) ◽  
pp. 709-715 ◽  
Author(s):  
Kim van Schagen ◽  
Luuk Rietveld ◽  
Alex Veersma ◽  
Robert Babuška

Owing to the nature of the treatment processes, monitoring the processes based on individual online measurements is difficult or even impossible. However, the measurements (online and laboratory) can be combined with a priori process knowledge, using mathematical models, to objectively monitor the treatment processes and measurement devices. The pH measurement is a commonly used measurement at different stages in the drinking water treatment plant, although it is a unreliable instrument, requiring significant maintenance. It is shown that, using a grey-box model, it is possible to assess the measurement devices effectively, even if detailed information of the specific processes is unknown.


Sign in / Sign up

Export Citation Format

Share Document