Pretreatment of Textile Industry Wastewaters with Ozone

1994 ◽  
Vol 29 (9) ◽  
pp. 151-160 ◽  
Author(s):  
M. Tzitzi ◽  
D. V. Vayenas ◽  
G. Lyberatos

Ozonation of textile industrial wastewaters was examined in CSTR and batch studies. Experiments were done for various types of textile wastewaters and for different reaction and retention times. Much better results were obtained using ozonation after the coagulation-precipitation stage. Also a mathematical model was developed, able to describe wastewater decolonization and COD reduction. In all cases the comparison between the model predictions and the experimental data was satisfactory.

2018 ◽  
Vol 14 (1) ◽  
Author(s):  
Bahador Abolpour ◽  
M. Mehdi Afsahi ◽  
Ataallah Soltani Goharrizi

Abstract In this study, reduction of in-flight fine particles of magnetite ore concentrate by methane at a constant heat flux has been investigated both experimentally and numerically. A 3D turbulent mathematical model was developed to simulate the dynamic motion of these particles in a methane content reactor and experiments were conducted to evaluate the model. The kinetics of the reaction were obtained using an optimizing method as: [-Ln(1-X)]1/2.91 = 1.02 × 10−2dP−2.07CCH40.16exp(−1.78 × 105/RT)t. The model predictions were compared with the experimental data and the data had an excellent agreement.


2002 ◽  
Vol 4 (1) ◽  
pp. 21-38 ◽  
Author(s):  
C. E. Kelly ◽  
R. D. Leek ◽  
H. M. Byrne ◽  
S. M. Cox ◽  
A. L. Harris ◽  
...  

In this paper a mathematical model that describes macrophage infiltration into avascular tumours is presented. The qualitative accuracy of the model is assessed by comparing numerical results with independent experimental data that describe the infiltration of macrophages into two types of spheroids: chemoattractant-producing (hepa-1) and chemoattractant-deficient (or C4) spheroids. A combination of analytical and numerical techniques are used to show how the infiltration pattern depends on the motility mechanisms involved (i.e. random motion and chemotaxis) and to explain the observed differences in macrophage infiltration into the hepa-1 and C4 spheroids. Model predictions are generated to show how the spheroid's size and spatial structure and the ability of its constituent cells influence macrophage infiltration. For example, chemoattractant-producing spheroids are shown to recruit larger numbers of macrophages than chemoattractant-deficient spheroids of the same size and spatial structure. The biological implications of these results are also discussed briefly.


2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Jayakumar Natesan Subramanian ◽  
Farouq S. Mjalli

The heat transfer cooling of a hot liquid in a stirred vessel has been studied experimentally with coolant flowing through a half-coil around the vessel. Correlations have been developed for the heat transfer coefficient of the half coil jacket. A mathematical model for the half coil jacket liquid temperature dynamics and its analytical solution is used to find the shell side temperature profile as a function of time. It is found that the model predictions are in satisfactory agreement with the experimental data and that the developed correlation is superior to previously published correlations for similar systems.


2021 ◽  
Vol 257 ◽  
pp. 03047
Author(s):  
Zhehua Du ◽  
Xin Lin

A simple mathematical model is proposed to account for emissions of Volatile Organic Compounds (VOCs) from three-layer building materials. The model considers both the diffusion within three layer building materials and the mass transfer resistance through the air boundary layer. A general solution method based on Laplace transform is presented. Compared to other models capable of accounting for emissions of VOCs from multi layer building materials, the present model is fully analytical instead of being numerical. The present model was validated by the experimental data from the specially designed test. The results indicated that there was a good agreement between the model predictions and the experimental data. It can also be seen from calculation that model ignoring the boundary layer resistance cannot fully reflect the real situation.


1996 ◽  
Vol 04 (02) ◽  
pp. 261-276
Author(s):  
ALFRED ŠVARC ◽  
MISLAV JURIN ◽  
SUZANA BOROVIĆ ◽  
HRVOJE ZORC ◽  
MARKO DOKO

A mathematical model for the heat deposition in tissue during the exposition to the red light, essential for the phototherapy, is presented. The comparison of model predictions with in vivo experimental data for the normal CBA/HZgr mice hind leg tissue is done in order to illustrate the domain of confidence of the theoretical model. The highest usable power of the light source, and consequently the lowest phototherapy treatment time with no influence upon normal tissue is determined.


1994 ◽  
Vol 116 (4) ◽  
pp. 707-713 ◽  
Author(s):  
P. S. Cumber ◽  
M. Fairweather ◽  
S. A. E. G. Falle ◽  
J. R. Giddings

A mathematical model capable of predicting the structure of turbulent, underexpanded jets is described. The model is based on solutions of the fluid flow equations obtained using a second-order accurate, finite-volume integration scheme coupled to an adaptive grid algorithm. Turbulence within these jets is modelled using a k-ε approach coupled to the compressible dissipation rate model of Sarkar et al. (1991a). Comparison of model predictions and experimental data, reported in the literature, on a number of moderately underexpanded jets demonstrate significant improvements over results derived using the standard k-ε approach, and the adequacy of the compressibility corrected turbulence model for predicting such jets.


2018 ◽  
Vol 15 (1) ◽  
pp. 169-181
Author(s):  
M. I. Sidorov ◽  
М. Е. Stavrovsky ◽  
V. V. Irogov ◽  
E. S. Yurtsev

Using the example of van der Pol developed a mathematical model of frictional self-oscillations in topochemically kinetics. Marked qualitative correspondence of the results of calculation performed using the experimental data of researchers.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1592
Author(s):  
Dominik Gryboś ◽  
Jacek S. Leszczyński ◽  
Dorota Czopek ◽  
Jerzy Wiciak

In this paper, we demonstrate how to reduce the noise level of expanded air from pneumatic tools. Instead of a muffler, we propose the expanded collecting system, where the air expands through the pneumatic tube and expansion collector. We have elaborated a mathematical model which illustrates the dynamics of the air flow, as well as the acoustic pressure at the end of the tube. The computational results were compared with experimental data to check the air dynamics and sound pressure. Moreover, the study presents the methodology of noise measurement generated in a pneumatic screwdriver in a quiet back room and on a window-fitting stand in a production hall. In addition, we have performed noise measurements for the pneumatic screwdriver and the pneumatic screwdriver on an industrial scale. These measurements prove the noise reduction of the pneumatic tools when the expanded collecting system is used. When the expanded collecting system was applied to the screwdriver, the measured Sound Pressure Level (SPL) decreased from 87 to 80 dB(A).


Sign in / Sign up

Export Citation Format

Share Document