The effect of anaerobic pre-treatment on the inert soluble COD of fermentation industry effluents

1995 ◽  
Vol 32 (12) ◽  
pp. 35-42 ◽  
Author(s):  
G. Yilmaz ◽  
I. Öztürk

The objective of this study is to determine the inert soluble COD of wastewaters from the fermentation industry. In this context, a series of experiments were performed for various effluents from baker's yeast industry including raw process wastewater, anaerobic pre-treatment plant effluents, domestic and washing waters mixture. The inert COD ratio (SISO) for the raw effluents from baker's yeast industry was determined as 0.1. This ratio was in the range of 0.20 to 0.30 for the anaerobically pre-treated effluents. TheSISO ratios for the wastewater simulating the effluent of the existing full-scale aerobic treatment plant have varied from 0.18 to 0.48. Such a large variation has been originated from the operating conditions of the existing full-scale anaerobic treatment plants. The higher volumetric loading rates and shorter sludge retention times correspond the lower SISO ratios for the full-scale anaerobic treatment systems in general.

1993 ◽  
Vol 28 (2) ◽  
pp. 199-209 ◽  
Author(s):  
T. Çiftçi ◽  
I. Öztürk

This paper presents the full-scale anaerobic treatment results from a fermentation plant producing baker's yeast from sugar beet molasses. The process of baker's yeast production generates high strength industrial effluents with a chemical oxygen demand (GOD) of 10 000-30 000 mg/liter. In addition to the sugar containing substances sulphur and nitrogen containing substances are added to the batch processes to promote cell growth and to control pH. This results in rather high concentrations of sulphate 0000-2700 mg/l) and ammonia (400-900 mg/l) in the wastewater. The treatment plant at Pakmaya Izmit Factory has two different processes: anaerobic first-stage treatment and aerobic second stage treatment. The anaerobic first-stage treatment system includes a buffer tank, an acid reactor, two methane reactors, lamella separators, a gas storage tank and gas burning facilities. The anaerobic reactors were constructed as upflow anaerobic sludge blanket reactors (UASBR) with internal sludge recirculation facilities. The anaerobic reactors have been operating in series mode at mesophilic temperature ranges. Long term Organic Loading Rates (OLR) in the acid, the first and the second stage methane reactors have been averaging 9.8, 8.6 and 3 kg COD/m3·d respectively. Average COD removal is 75 percent in the anaerobic pretreatment stage. Average biogas production is 8000 m3/d, corresponding to a biogas conversion yield of 0.6 m3 per kg COD removed and it is equivalent to a netbioenergy recovery of 40 000 kWh/d.


2002 ◽  
Vol 45 (12) ◽  
pp. 135-142 ◽  
Author(s):  
B. Inanc ◽  
B. Calli ◽  
K. Alp ◽  
F. Ciner ◽  
B. Mertoglu ◽  
...  

This paper describes the wastewater characterization and aerobic/anaerobic treatability (oxygen uptake rate and biogas production measurement) of chemical-synthesis based pharmaceutical industry effluents in a nearby baker's yeast industry treatment plant. Preliminary experiments by the industry had indicated strong anaerobic toxicity. On the other hand, aerobic treatability was also uncertain due to complexity and unknown composition of the wastewater. The work in this study has indicated that the effluents of the pharmaceutical industry can be treated without toxicity in the aerobic stage of the treatment plant. Methanogenic activity tests with anaerobic sludge from the anaerobic treatment stage of the wastewater treatment plant and acetate as substrate have confirmed the strong toxicity, while showing that 30 min aeration or coagulation with an alum dose of 300 mg/l is sufficient for reducing the toxicity almost completely. Powdered activated carbon, lime and ferric chloride (100-1,000 mg/l) had no effect on reduction of the toxicity. Consequently, the pharmaceutical industry was recommended to treat its effluents in the anaerobic stage of the nearby baker's yeast industry wastewater treatment plan at which there will be no VOC emission and toxicity problem, provided that pretreatment is done.


1989 ◽  
Vol 21 (4-5) ◽  
pp. 145-155 ◽  
Author(s):  
R. Méndez ◽  
J. M. Lema ◽  
R. Blázquez ◽  
M. Pan ◽  
C. Forjan

We have evaluated the utility of applying anaerobic digestion treatment to the leachates from two landfill sites receiving solid urban refuse from populations of similar standards of living. Both tips are located in the same area and have very similar climates, but they differ as regards the length of time they have been operated. The leachates from the older tip have much lower levels of organic load, 40% of which was refractory to the anaerobic digestion treatment applied. The digestibility of leachates was studied by using a semicontinuous suspended sludge system.It was possible to remove up to 65% of the soluble COD of leachates from the young tip by means of an anaerobic filter working at HRTs less than 2 days. This system proved to be highly stable when its operating conditions were subjected to perturbations similar to those likely to be suffered by a full-scale plant.


1997 ◽  
Vol 36 (2-3) ◽  
pp. 311-319 ◽  
Author(s):  
Ute Austermann-Haun ◽  
Karl-Heinz Rosenwinkel

Two examples of full scale UASB-reactors in a fruit juice factory and a brewery are given. In both cases, the design was based on semi-technical tests. Although the wastewater concentrations are rather similar and move within a low range, the parts of the anaerobic treatment plants and their design are different. In both cases, the COD removal efficiency in the UASB-reactors is consistently above 80%. It becomes apparent that UASB-reactors are very suitable for industries with seasonal load variations. The co-fermentation of a kieselguhre-sludge-mixture was tested in lab-scale experiments. It became obvious that the pellet structure of the biomass gets lost. Furthermore, it is shown that the running expenses of anaerobic pre-treatment are very low, even when combined with an aerobic stage.


2013 ◽  
Vol 34 (1) ◽  
pp. 175-186 ◽  
Author(s):  
Ilknur Atasoy ◽  
Mehmet Yuceer ◽  
Ridvan Berber

Abstract Saccharamyces cerevisia known as baker’s yeast is a product used in various food industries. Worldwide economic competition makes it a necessity that industrial processes be operated in optimum conditions, thus maximisation of biomass in production of saccharamyces cerevisia in fedbatch reactors has gained importance. The facts that the dynamic fermentation model must be considered as a constraint in the optimisation problem, and dynamics involved are complicated, make optimisation of fed-batch processes more difficult. In this work, the amount of biomass in the production of baker’s yeast in fed-batch fermenters was intended to be maximised while minimising unwanted alcohol formation, by regulating substrate and air feed rates. This multiobjective problem has been tackled earlier only from the point of view of finding optimum substrate rate, but no account of air feed rate profiles has been provided. Control vector parameterisation approach was applied the original dynamic optimisation problem which was converted into a NLP problem. Then SQP was used for solving the dynamic optimisation problem. The results demonstrate that optimum substrate and air feeding profiles can be obtained by the proposed optimisation algorithm to achieve the two conflicting goals of maximising biomass and minimising alcohol formation.


2017 ◽  
Vol 76 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Manuel Regueiro-Picallo ◽  
Juan Naves ◽  
Jose Anta ◽  
Joaquín Suárez ◽  
Jerónimo Puertas

A series of experiments were carried out with real wastewater in a pilot flume located at A Coruña wastewater treatment plant (WWTP) (Spain). A full scale model was developed to test a circular (300 mm inner diameter) and an equivalent area egg-shaped plastic pipe under controlled experimental conditions (pipe slope 2–5‰, averaged discharge Q = 4 L/s). Velocity profiles and sediment accumulation in the pipe invert was daily measured. Within the 7–11 days, the average sediment accumulation rate found in the circular pipe was between 1.4 and 3.8 mm/d. The sediment height depended on the input wastewater sediment distribution and organic content. The egg-shaped pipe presented no sediment deposit for the same downstream boundary conditions, although biofilms were attached to the walls of both pipes. Besides, wastewater quality was monitored continuously and sediment composition was studied at the end of experiments. Two types of sediment were recorded: a granular bed deposit (ρ = 1,460 kg/m3, d50 = 202 μm) and wall biofilms (ρ = 1,190 kg/m3, d50 = 76 μm).


mSystems ◽  
2019 ◽  
Vol 4 (4) ◽  
Author(s):  
María Victoria Pérez ◽  
Leandro D. Guerrero ◽  
Esteban Orellana ◽  
Eva L. Figuerola ◽  
Leonardo Erijman

ABSTRACT Understanding ecosystem response to disturbances and identifying the most critical traits for the maintenance of ecosystem functioning are important goals for microbial community ecology. In this study, we used 16S rRNA amplicon sequencing and metagenomics to investigate the assembly of bacterial populations in a full-scale municipal activated sludge wastewater treatment plant over a period of 3 years, including a 9-month period of disturbance characterized by short-term plant shutdowns. Following the reconstruction of 173 metagenome-assembled genomes, we assessed the functional potential, the number of rRNA gene operons, and the in situ growth rate of microorganisms present throughout the time series. Operational disturbances caused a significant decrease in bacteria with a single copy of the rRNA (rrn) operon. Despite moderate differences in resource availability, replication rates were distributed uniformly throughout time, with no differences between disturbed and stable periods. We suggest that the length of the growth lag phase, rather than the growth rate, is the primary driver of selection under disturbed conditions. Thus, the system could maintain its function in the face of disturbance by recruiting bacteria with the capacity to rapidly resume growth under unsteady operating conditions. IMPORTANCE Disturbance is a key determinant of community assembly and dynamics in natural and engineered ecosystems. Microbiome response to disturbance is thought to be influenced by bacterial growth traits and life history strategies. In this time series observational study, the response to disturbance of microbial communities in a full-scale activated sludge wastewater treatment plant was assessed by computing specific cellular traits of genomes retrieved from metagenomes. It was found that the genomes observed in disturbed periods have more copies of the rRNA operon than genomes observed in stable periods, whereas the in situ mean relative growth rates of bacteria present during stable and disturbed periods were indistinguishable. From these intriguing observations, we infer that the length of the lag phase might be a growth trait that affects the microbial response to disturbance. Further exploration of this hypothesis could contribute to better understanding of the adaptive response of microbiomes to unsteady environmental conditions.


2020 ◽  
Vol 81 (9) ◽  
pp. 2033-2042 ◽  
Author(s):  
Ivelina Dimitrova ◽  
Agnieszka Dabrowska ◽  
Sara Ekström

Abstract Partial nitritation and anaerobic ammonium oxidation (PNA) is a useful process for the treatment of nitrogen-rich centrate from the dewatering of anaerobically digested sludge. A one-stage PNA moving bed biofilm reactor (MBBR) was started up without inoculum at Klagshamn wastewater treatment plant, southern Sweden. The reactor was designed to treat up to 200 kgN d−1, and heated dilution water was used during start-up. The nitrogen removal was >80% after 111 days of operation, and the nitrogen removal rate reached 1.8 gN m−2 d1 at 35 °C. The start-up period of the reactor was comparable to that of inoculated full-scale systems. The operating conditions of the system were found to be important, and online control of the free ammonia concentration played a crucial role. Ex situ batch activity tests were performed to evaluate process performance.


1995 ◽  
Vol 18 (5) ◽  
pp. 373-381 ◽  
Author(s):  
Kazuo SHIBAZAKI ◽  
Shigeru KOBAYASHI ◽  
Nobuyuki ASHIKAGA ◽  
Takashi MENJU

Sign in / Sign up

Export Citation Format

Share Document