Anaerobic Treatment of the High Strength Wastes from the Yeast Industry

1993 ◽  
Vol 28 (2) ◽  
pp. 199-209 ◽  
Author(s):  
T. Çiftçi ◽  
I. Öztürk

This paper presents the full-scale anaerobic treatment results from a fermentation plant producing baker's yeast from sugar beet molasses. The process of baker's yeast production generates high strength industrial effluents with a chemical oxygen demand (GOD) of 10 000-30 000 mg/liter. In addition to the sugar containing substances sulphur and nitrogen containing substances are added to the batch processes to promote cell growth and to control pH. This results in rather high concentrations of sulphate 0000-2700 mg/l) and ammonia (400-900 mg/l) in the wastewater. The treatment plant at Pakmaya Izmit Factory has two different processes: anaerobic first-stage treatment and aerobic second stage treatment. The anaerobic first-stage treatment system includes a buffer tank, an acid reactor, two methane reactors, lamella separators, a gas storage tank and gas burning facilities. The anaerobic reactors were constructed as upflow anaerobic sludge blanket reactors (UASBR) with internal sludge recirculation facilities. The anaerobic reactors have been operating in series mode at mesophilic temperature ranges. Long term Organic Loading Rates (OLR) in the acid, the first and the second stage methane reactors have been averaging 9.8, 8.6 and 3 kg COD/m3·d respectively. Average COD removal is 75 percent in the anaerobic pretreatment stage. Average biogas production is 8000 m3/d, corresponding to a biogas conversion yield of 0.6 m3 per kg COD removed and it is equivalent to a netbioenergy recovery of 40 000 kWh/d.

1995 ◽  
Vol 32 (12) ◽  
pp. 131-139 ◽  
Author(s):  
T. Çiftçi ◽  
I. Öztürk

This paper presents the results of nine years of experience in design and operating of full-scale anaerobic-aerobic treatment plants in a fermentation industry producing baker's yeast from sugarbeet molasses. The PAKMAYA Izmit Factory has a large two-staged treatment plant since 1986: anaerobic first stage and aerobic second stage. The anaerobic reactors were constructed as Upflow Anaerobic Sludge Blanket Reactors (UASBR) with internal and external sludge recirculation facilities. Average COD removals remain in the range of 75% in the mesophilic anaerobic stage. Average daily biogas production rates are as high as 20,000 m3/day. This treatment plant is one of the largest in the world in terms of biogas production. Similar systems were constructed later in two other factories of the same company (Cumaova-Bolu, Kemalpasa-Izmir). The biogas conversion yield is about 0.65 m3 per kg COD removed. The energy produced from the biogas used in the boiler houses is about 35% of the total energy requirement of the factory. The effluents from the anaerobic first stage are fed to the subsequent aerobic treatment system by mixing with low strength effluents of the factory. The aerobic second stage was designed and operated as an extended aeration activated sludge system. The COD removals of the aerobic stage are averaging at about 60 to 75%. This paper also discusses the operating problems encountered in the various stages of the treatment system and their solutions during the nine years of full-scale operation in three different treatment plants of PAKMAYA.


2002 ◽  
Vol 45 (12) ◽  
pp. 135-142 ◽  
Author(s):  
B. Inanc ◽  
B. Calli ◽  
K. Alp ◽  
F. Ciner ◽  
B. Mertoglu ◽  
...  

This paper describes the wastewater characterization and aerobic/anaerobic treatability (oxygen uptake rate and biogas production measurement) of chemical-synthesis based pharmaceutical industry effluents in a nearby baker's yeast industry treatment plant. Preliminary experiments by the industry had indicated strong anaerobic toxicity. On the other hand, aerobic treatability was also uncertain due to complexity and unknown composition of the wastewater. The work in this study has indicated that the effluents of the pharmaceutical industry can be treated without toxicity in the aerobic stage of the treatment plant. Methanogenic activity tests with anaerobic sludge from the anaerobic treatment stage of the wastewater treatment plant and acetate as substrate have confirmed the strong toxicity, while showing that 30 min aeration or coagulation with an alum dose of 300 mg/l is sufficient for reducing the toxicity almost completely. Powdered activated carbon, lime and ferric chloride (100-1,000 mg/l) had no effect on reduction of the toxicity. Consequently, the pharmaceutical industry was recommended to treat its effluents in the anaerobic stage of the nearby baker's yeast industry wastewater treatment plan at which there will be no VOC emission and toxicity problem, provided that pretreatment is done.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 37-44
Author(s):  
B. Gulmez ◽  
I. Ozturk ◽  
K. Alp ◽  
O. A. Arikan

The purpose of this study is to demonstrate the feasibility of anaerobic treatment of pharmaceutical and baker's yeast industry effluents in a joint treatment system. Anaerobic treatability studies have been performed in a lab-scale upflow anaerobic sludge blanket reactor (UASBR). The experimental study has been carried out for 333 days. The influent COD's during the experimental study were about 10,000 mg/l. Pharmaceutical wastewater has a 5% of inhibition on the COD removals at the dilution rate of 1/100 or more in the joint anaerobic treatment with baker's yeast industry effluents. Maximum inhibition of 10% on the average was observed when the system was characterized with acclimation periods. The study has shown that, following the solvent extraction with pre-aeration process, a common anaerobic treatment can be applied to baker's yeast industry wastewater and to pharmaceutical industry effluents.


1995 ◽  
Vol 32 (12) ◽  
pp. 35-42 ◽  
Author(s):  
G. Yilmaz ◽  
I. Öztürk

The objective of this study is to determine the inert soluble COD of wastewaters from the fermentation industry. In this context, a series of experiments were performed for various effluents from baker's yeast industry including raw process wastewater, anaerobic pre-treatment plant effluents, domestic and washing waters mixture. The inert COD ratio (SISO) for the raw effluents from baker's yeast industry was determined as 0.1. This ratio was in the range of 0.20 to 0.30 for the anaerobically pre-treated effluents. TheSISO ratios for the wastewater simulating the effluent of the existing full-scale aerobic treatment plant have varied from 0.18 to 0.48. Such a large variation has been originated from the operating conditions of the existing full-scale anaerobic treatment plants. The higher volumetric loading rates and shorter sludge retention times correspond the lower SISO ratios for the full-scale anaerobic treatment systems in general.


2010 ◽  
Vol 61 (9) ◽  
pp. 2399-2406 ◽  
Author(s):  
Z. Sawajneh ◽  
A. Al-Omari ◽  
M. Halalsheh

An anaerobic treatment system that consists of an Anaerobic Filter (AF) and an Upflow Anaerobic Sludge Blanket (UASB) in series was built and operated to investigate its performance in treating strong domestic wastewater with high suspended solids fraction under Jordan's ambient temperatures of 25°C for summer and 18°C for winter. The system was operated from September 2003 until early April 2004. The system was operated at a Hydraulic Retention Time (HRT) of 4 hours for the first stage AF and 8 hours for the second stage UASB. Average CODt and CODss removal efficiencies of the AF/UASB were 58% and 81% respectively for the operation period. The results showed that the first stage AF was effective in removing suspended solids. In addition, hydrolysis, acidification and methanogenesis took place in the first stage AF which was advantageous to the second stage UASB. It was concluded that the AF/UASB system is effective in treating strong domestic wastewater with high suspended solids content under Jordan's ambient temperatures.


2009 ◽  
Vol 59 (11) ◽  
pp. 2265-2272 ◽  
Author(s):  
S. Satyanarayan ◽  
A. Karambe ◽  
A. P. Vanerkar

Herbal pharmaceutical industry has grown tremendously in the last few decades. As such, literature on the treatment of this wastewater is scarce. Water pollution control problems in the developing countries need to be solved through application of cost effective aerobic/anaerobic biological systems. One such system—the upflow anaerobic sludge blanket (UASB) process which is known to be cost effective and where by-product recovery was also feasible was applied for treatment of a high strength wastewater for a period of six months in a pilot scale upflow anaerobic sludge blanket (UASB) reactor with a capacity of 27.44 m3. Studies were carried out at various organic loading rates varying between 6.26 and 10.33 kg COD/m3/day and hydraulic retention time (HRT) fluctuating between 33 and 43 hours. This resulted in chemical oxygen demand (COD), biochemical oxygen demand (BOD) and suspended solids (SS) removal in the range of 86.2%–91.6%, 90.0%–95.2% and 62.6%–68.0% respectively. The biogas production varied between 0.32–0.47 m3/kg COD added. Sludge from different heights of UASB reactor was collected and subjected to scanning electron microscopy (SEM). The results indicated good granulation with efficient UASB reactor performance.


2005 ◽  
Vol 51 (1) ◽  
pp. 137-144 ◽  
Author(s):  
R. Moletta

Anaerobic digestion is widely used for wastewater treatment, especially in the food industries. Generally after the anaerobic treatment there is an aerobic post-treatment in order to return the treated water to nature. Several technologies are applied for winery wastewater treatment. They are using free cells or flocs (anaerobic contact digesters, anaerobic sequencing batch reactors and anaerobic lagoons), anaerobic granules (Upflow Anaerobic Sludge Blanket – UASB), or biofilms on fixed support (anaerobic filter) or on mobile support as with the fluidised bed. Some technologies include two strategies, e.g. a sludge bed with anaerobic filter as in the hybrid digester.With winery wastewaters (as for vinasses from distilleries) the removal yield for anaerobic digestion is very high, up to 90–95% COD removal. The organic loads are between 5 and 15 kgCOD/m3 of digester/day. The biogas production is between 400 and 600 L per kg COD removed with 60 to 70% methane content. For anaerobic and aerobic post-treatment of vinasses in the Cognac region, REVICO company has 99.7% COD removal and the cost is 0.52 Euro/m3 of vinasses.


2019 ◽  
Vol 14 (2) ◽  
pp. 249-258
Author(s):  
S. R. Amaral ◽  
L. V. dos Santos ◽  
L. M. Lima ◽  
D. V. Vich ◽  
L. M. Queiroz

Abstract The aim of this paper was to evaluate the performance of two modified upflow anaerobic reactor (RAns) as a decentralized technology for the treatment of high-strength domestic wastewater. Two full-scale anaerobic reactors (Ran1 and Ran2) with the same configuration and total volume of 14.6 m³, total height of 2.57 m, and constructed from fibreglass reinforced plastics were operated with a 16-hour hydraulic retention time and submitted to a volumetric organic load less than 2.7 kg chemical oxygen demand (COD)·m−3·d−1. The RAns were monitored for 10 consecutive months and showed the capability to support the fluctuations of organic loading and volumetric rates. The compact anaerobic reactors proved to be effective in removing organic matter (biological oxygen demand removal efficiencies greater than 70% and the average soluble COD removal efficiencies greater than 57.4%). The solids profile in the reactor ranged from very dense particles with good settleability close to the bottom (sludge bed) to a more dispersed and light sludge close to the top of the reactor (sludge blanket), similar to conventional UASB reactors.


2008 ◽  
Vol 57 (6) ◽  
pp. 863-868 ◽  
Author(s):  
D. Bhattacharyya ◽  
K. S. Singh

This research integrates two different concepts of anaerobic biotechnology- two-phase anaerobic treatment and anaerobic granular sludge bed technology, in treatment of colored wastewaters from textile industries. Four anaerobic reactors based on upflow anaerobic sludge blanket (UASB) technology were used as acid reactors and an expanded granular sludge bed (EGSB) reactor was used as a methane reactor. A conventional single-phase anaerobic reactor, working on EGSB technology was run in parallel to compare the performances of the two systems. Reactors were operated at different hydraulic retention times. The results from the study, which span over a period of 400 days, indicated that the two-phase system produces a higher quality of effluent in terms of color, COD and suspended solids than single-phase anaerobic treatment when operated under similar conditions. Alkalinity requirement of two-phase system was also observed to be lower than that of single-phase system which is important regarding design consideration.


Sign in / Sign up

Export Citation Format

Share Document