Removal of pathogenic organisms from the effluent of an upflow anaerobic digester using waste stabilization ponds

1995 ◽  
Vol 31 (12) ◽  
pp. 275-284 ◽  
Author(s):  
N. G. H. Dixo ◽  
M. P. Gambrill ◽  
P. F. C. Catunda ◽  
A. C. van Haandel

A series of four pilot-scale, shallow waste stabilization ponds (WSPs), comprising one facultative followed by three maturation ponds with a total design retention time of 20 days, was monitored to observe its ability to remove pathogenic organisms from the effluent of an upflow anaerobic sludge blanket (UASB) digester. The UASB reactor received strong domestic wastewater from the shanty district of a city in north-east Brazil. The raw wastewater had a very high concentration of intestinal nematode eggs of which, on average, 89.6 percent were removed in the UASB reactor. No intestinal nematode eggs were recovered in the effluent of the first maturation pond, making it suitable for restricted irrigation. The removal of eggs in the first pond exceeded predictions made using a recently published model. Faecal coliforms (FC) were reduced by 4.7 log units on average in the pond series -- the final effluent being suitable for unrestricted irrigation. pHs exceeding 10 were attained in the final maturation pond at the sunniest time of day. There was a significant correlation between levels of pH and FC in the ponds, the latter being ≤ 1000 per 100 ml when the former was ≥ 9.1. The removal of FC in the ponds was linear over the range of pH encountered. The findings are consistent with recent work by others suggesting that FC removal in ponds is multi-factorial. The UASB reactor, with a retention time of 7 h, is an efficient primary treatment alternative to an anaerobic pond in a WSP series receiving an extremely strong domestic wastewater. There are potential advantages of using the former in preference to the latter in a series of ponds.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1193
Author(s):  
Silvânia Lucas dos Santos ◽  
Adrianus van Haandel

Waste Stabilization Ponds (WSPs) are commonly used for sewage treatment. These systems are composed of a series of ponds: (1) anaerobic ponds, (2) facultative ponds, and (3) maturation ponds. WSPs generally produce good-quality effluent in terms of organic matter and pathogen removal, but their application has disadvantages. The most serious disadvantages are a long retention time, the release of biogas, and the impossibility of removing nutrients. A promising alternative to the use of WSPs is replacing the anaerobic pond and facultative pond with an upflow anaerobic sludge blanket (UASB) reactor, with the advantages of greatly reducing the retention time and the biogas capture. The post-treatment ponds of the UASB reactor effluent involve oxygen production and the biological consumption of carbon dioxide, which raises the pH. An experimental investigation showed that it is possible to use polishing ponds in a sequential batch regime instead of continuous flow. This modification accelerates the decay of pathogens and accelerates the increase in pH, which, in turn, facilitates the removal of nitrogen and phosphorus. This produces a good-quality effluent with low concentrations of biodegradable organic material, nutrients, and pathogens. This good-quality effluent is obtained in a system without energy consumption or auxiliary materials and with a much smaller area than conventional stabilization ponds.


1986 ◽  
Vol 18 (10) ◽  
pp. 31-35 ◽  
Author(s):  
J. I. Oragui ◽  
T. P. Curtis ◽  
S. A. Silva ◽  
D. D. Mara

The removal of excreted bacteria (faecal coliforms, faecal streptococci, Clostridium perfringens, total and sorbitol-fermenting bifidobacteria, salmonellae and thermophilic campylobacters) and viruses (enterovirus and rotavirus) in a series of deep anaerobic, facultative and maturation ponds (depth range: 2.8 - 3.4 m), with an overall retention time of 21 days and a mean mid-depth temperature of 27°C, was studied. Thermophilic campylobacters, bifidobacteria and salmonellae were not detected after 11, 16 and 21 days' retention respectively. Faecal coliforms, faecal streptcocci and Cl. perfringens were reduced by 4, 4 and 2 orders of magnitude respectively, and enteroviruses and rotaviruses both by 3 orders. The results indicate that pathogen removal in deep ponds is similar to that in ponds of normal depth.


2016 ◽  
Vol 2 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Jordan J. Schmidt ◽  
Colin M. Ragush ◽  
Wendy H. Krkosek ◽  
Graham A. Gagnon ◽  
Rob C. Jamieson

A majority of communities in the Canadian territory of Nunavut rely on passive waste stabilization ponds (WSPs) for domestic wastewater treatment. Little research has been conducted on the treatment performance of these systems. Therefore, in response to impending federal wastewater regulations, a research program was conducted in order to characterize contaminant removal, with phosphorus a contaminant of particular concern. The performance of WSPs in the Arctic communities of Kugaaruk, Pond Inlet, Grise Fiord, and Clyde River was evaluated from 2011 to 2014. Removal of total phosphorus was highly variable, ranging from 24% (Pond Inlet, 2014) to 76% (Grise Fiord, 2011). The average removal efficiency was 44%. Effluent total phosphorus concentrations generally exceeded 7 mg P/L, partly due to elevated raw wastewater concentrations. Over the course of the treatment season (defined as June to September, when the WSP is thawed), limited additional total phosphorus removal was observed. A fractionation analysis of WSP sediments showed that organic phosphorus and phosphorus bound to aluminum and iron were the predominant forms, which provided insight into primary treatment mechanisms. Further studies on these mechanisms are needed in order to optimize Arctic WSP treatment.


1992 ◽  
Vol 26 (6) ◽  
pp. 863-865 ◽  
Author(s):  
R.M. Ayres ◽  
G.P. Alabaster ◽  
D.D. Mara ◽  
D.L. Lee

1987 ◽  
Vol 19 (3-4) ◽  
pp. 569-573 ◽  
Author(s):  
J. I. Oragui ◽  
T. P. Curtis ◽  
S. A. Silva ◽  
D. D. Mara

The removal of excreted bacteria (faecal coliforms, faecal streptococci, Clostridium perfringens, total and sorbitol-fermenting bifidobacteria, salmonellae and thermophilic campylobacters) and viruses (enterovirus and rotavirus) in a series of deep anaerobic, facultative and maturation ponds (depth range: 2.8 - 3.4 m), with an overall retention time of 21 days and a mean mid-depth temperature of 27°C, was studied. Thermophilic campylobacters, bifidobacteria and salmonellae were not detected after 11, 16 and 21 days' retention respectively. Faecal coliforms, faecal streptcocci and Cl. perfringens were reduced by 4, 4 and 2 orders of magnitude respectively, and enteroviruses arid rotaviruses both by 3 orders. The results indicate that pathogen removal in deep ponds is similar to that in ponds of normal depth.


Author(s):  
Badre Achag ◽  
Hind Mouhanni ◽  
Abdelaziz Bendou

Abstract In many parts of the world, waste stabilization ponds (WSPs) are currently the preferred wastewater treatment method for municipal wastewater. The objective of this research is to examine the performance of a WSP in an arid climate region and to identify ways to improve its purification efficiency so that it can meet the criteria for reuse. The results attributed the poor performance to both improper process and physical design after 12 months of physicochemical and bacteriological analyses, as well as monitoring of operation, maintenance and loading rates. In tertiary treatment, maturation ponds are added, an increase in the capacity of the station, and management of the flow rate and retention time for each pond. By simulating the new WSP with GPS-X, the best pond area ratio obtained is 2.5 m2/capita, with a retention time of 4 days for anaerobic ponds, 20 days for facultative ponds and 3 days for two maturation ponds in series, which is suitable and provides reduction rates of BOD and fecal coliforms of 95 and 99%, respectively, with an average effluent concentration of 20 mg/L and 195 CFU. According to the results, well-maintained WSPs provide a viable, self-sufficient and environmentally friendly wastewater treatment solution for irrigation water supply in dry areas.


2007 ◽  
pp. 419-428
Author(s):  
R.M. Al-Sa 'ed ◽  
N. Mahmoud ◽  
A. Abu-Madi ◽  
O.R. Zimmo

This paper evaluates the feasibility of using local rock filter as natural media in waste stabilization ponds, A pilot-scale algae-rock filter ponds (ARPs) system was investigated, in parallel with algae-based ponds (ABPs) over a period of 6 months to evaluate the treatment efficacy of both systems. Each system entailed 4 equal ponds in series and was continuously fed with domestic wastewater from Birzeit University. The removal rates of organic matter, nutrients and faecal coliforms were monitored within each treatment system. The results obtained revealed that ARPs system was more efficient in the removal of organic matter (TSS and COD; 86% and 84%, respectively) and fecal coliforms (4 log10) than ABPs (81%, 81%, 3 log10, respectively). Nitrogen was reduced in the ARPs to an average of24 mg N/1; in contrast the ABPs effluent contained 32 mg N/1. Compared to ABP system, passive aerated ARPs option is an efficient, a low-cost and land-saving alternative with effluent quality suitable for restricted agricultural use in rural areas.


2009 ◽  
Vol 3 (2) ◽  
pp. 58-62 ◽  
Author(s):  
Valderi Leite ◽  
Gilson Athayde Junior ◽  
José Sousa ◽  
Wilton Lopes ◽  
Irsael Henrique

Sign in / Sign up

Export Citation Format

Share Document