Pollution by phosphorus and nitrogen in water streams feeding the Zelivka drinking water reservoir

1999 ◽  
Vol 39 (12) ◽  
pp. 207-214 ◽  
Author(s):  
Jiri Holas ◽  
Marketa Holas ◽  
Vladimir Chour

This case study refers to long term monitoring of Martinicky and Sedlický Brooks, which represent general water-quality characteristics well related to the watershed of the whole Zelivka drinking water reservoir. For a period of more than ten years water-quality indices were systematically monitored at each profile together with actual discharges recorded at selected profiles. It is seen that the only critical pollutants are nutrients, namely nitrate nitrogen and total phosphorus, originating from both urban and agricultural sources, while industrial pollution is relatively marginal in the watershed. Phosphorus concentrations do not display any simple time regularity. Persistent all-year background phosphorus load gives evidence of the urban origin of pollution. Total input of phosphorus into the reservoir came mainly from surface inflows, out of rainfall and out of bottom sediments. Phosphorus was found to be the limiting nutrient for phytoplankton growth and was therefore recognised as the principal element responsible for reservoir eutrophication rates, which could probably be effectively controlled by concerted abatement actions. Most of the watershed born nitrogen pollution has a distinctly non-point (diffuse) character. Typical yearly pattern of nitrate concentrations means distinct and regular increase during end-of-winter and spring period due to processes of mineralization, typical for productive arable land on soils with good drainage properties. The process of state economy transition, which was initiated in 1989, has led to dramatic decrease of fertiliser inputs per hectare of land. Reduced fertilisation of arable land has not yet been reflected in improved quality of surface waters. The proposed strategy for prevention and abatement in the Zelivka reservoir eutrophication should be based on win-win principles applied throughout the entire watershed and, at present, preferentially focused on:phosphorus cycle control and improvement within both the watershed and reservoir water (diminished use of chemicals producing reactive phosphorus compounds, improved phosphorus removal from urban waste water, to prevent phosphorus release from bottom sediments)general soil erosion control and prevention - grassland cultivation on vulnerable areas and buffer zones and subsidy for cultivating plants on arable land even between growing periodsproper maintenance and improvement of treatment plant technology to maintain actual standards of produced drinking water.

Author(s):  
Md Mamun ◽  
Usman Atique ◽  
Ji Yoon Kim ◽  
Kwang-Guk An

Freshwater reservoirs are a crucial source of urban drinking water worldwide; thus, long-term evaluations of critical water quality determinants are essential. We conducted this study in a large drinking water reservoir for 11 years (2010–2020). The variabilities of ambient nutrients and total suspended solids (TSS) throughout the seasonal monsoon-mediated flow regime influenced algal chlorophyll (Chl-a) levels. The study determined the role of the monsoon-mediated flow regime on reservoir water chemistry. The reservoir conditions were mesotrophic to eutrophic based on nitrogen (N) and phosphorus (P) concentrations. An occasional total coliform bacteria (TCB) count of 16,000 MPN per 100 mL was recorded in the reservoir, presenting a significant risk of waterborne diseases among children. A Mann–Kendall test identified a consistent increase in water temperature, conductivity, and chemical oxygen demand (COD) over the study period, limiting a sustainable water supply. The drought and flood regime mediated by the monsoon resulted in large heterogeneities in Chl-a, TCB, TSS, and nutrients (N, P), indicating its role as a key regulator of the ecological functioning of the reservoir. The ambient N:P ratio is a reliable predictor of sestonic Chl-a productivity, and the reservoir was P-limited. Total phosphorus (TP) had a strong negative correlation (R2 = 0.59, p < 0.05) with the outflow from the dam, while both the TSS (R2 = 0.50) and Chl-a (R2 = 0.32, p < 0.05) had a strong positive correlation with the outflow. A seasonal trophic state index revealed oligo-mesotrophic conditions, indicating a limited risk of eutrophication and a positive outcome for long-term management. In conclusion, the Asian monsoon largely controlled the flood and drought conditions and manipulated the flow regime. Exceedingly intensive crop farming in the basin may lead to oligotrophic nutrient enrichment. Although the reservoir water quality was good, we strongly recommend stringent action to alleviate sewage, nutrient, and pollutant inflows to the reservoir.


2013 ◽  
Vol 64 (5) ◽  
pp. 475 ◽  
Author(s):  
Anders Nielsen ◽  
Dennis Trolle ◽  
Wang Me ◽  
Liancong Luo ◽  
Bo-Ping Han ◽  
...  

Across China, nutrient losses associated with agricultural production and domestic sewage have triggered eutrophication, and local managers are challenged to comply with drinking water quality requirements. Evidently, the improvement of water quality should be targeted holistically and encompass both point sources and surface activities within the watershed of a reservoir. We expanded the ordinary Soil Water Assessment Tool – (SWAT) with a widely used empirical equation to estimate total phosphorus (TP) concentrations in lakes and reservoirs. Subsequently, we examined the effects of changes in land and livestock management and sewage treatment on nutrient export and derived consequences for water quality in the Chinese subtropical Kaiping (Dashahe) drinking water reservoir (supplying 0.4 million people). The critical load of TP was estimated to 13.5 tonnes yr–1 in order to comply with the minimum drinking water requirements, which corresponds to 87% of the simulated load to the reservoir at present. Both the implementation of buffer zones along rivers and removal of sewage discharges showed marked improvement in reservoir water quality. Future research should focus on both hydrological model performance and nutrient transport pathways, which are challenged by a complex artificially altered water infrastructure in the form of ditches, channels and ponds in monsoon-influenced subtropical watersheds.


2020 ◽  
Vol 25 (4) ◽  
pp. 565-579
Author(s):  
Azadeh Golshan ◽  
Craig Evans ◽  
Phillip Geary ◽  
Abigail Morrow ◽  
Zoe Rogers ◽  
...  

2020 ◽  
Vol 79 (17) ◽  
Author(s):  
Johanna M. Blake ◽  
Jeb E. Brown ◽  
Christina L. Ferguson ◽  
Rebecca J. Bixby ◽  
Naomi T. Delay

1995 ◽  
Vol 32 (5-6) ◽  
pp. 235-243 ◽  
Author(s):  
C. W. Randall ◽  
T. J. Grizzard

The high dam on the Occoquan River of Northern Virginia, United States of America, was constructed in 1957, forming a drinking water reservoir with a capacity of 37.1 × 106m3 formed by drainage from a 1 460 km2 watershed, and providing a safe yield of 189 251 m3 per day. Deteriorating water quality in the late 1960s led to a special “policy” for the watershed, designed to preserve the reservoir as a drinking water supply. Key provisions of the policy mandated replacement of the watershed's 11 publicly owned wastewater treatment works with a single advanced wastewater treatment plant (AWT), and establishment of the Occoquan Watershed Monitoring Programme. Early results from the programme established non-point nutrient pollution as a major cause of water quality deterioration and resulted in the implementation of non-point pollution controls throughout the watershed during the late 1970s. The AWT plant went on-line in July 1978. Continuous monitoring since 1973 has demonstrated both the necessity and the effectiveness of point and non-point nutrient controls for the preservation of the reservoir's water quality. The AWT plant provides excellent removal of organics and phosphorus, plus complete nitrification. The nitrates are discharged to the receiving stream to enhance conditions in the reservoir. Control policies include land-use management for the preservation of this essential water supply for 750 000 people in the Washington, D.C. suburbs. Land-use management decisions are based on the results obtained with a watershed-reservoir linked computer model which predicts water quality changes resulting from land-use changes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8174 ◽  
Author(s):  
Samuel F. Atkinson ◽  
Matthew C. Lake

Background Riparian corridors can affect nutrient, organic matter, and sediment transport, all of which shape water quality in streams and connected downstream waters. When functioning riparian corridors remain intact, they provide highly valued water quality ecosystem services. However, in rapidly urbanizing watersheds, riparian corridors are susceptible to development modifications that adversely affect those ecosystem services. Protecting high quality riparian corridors or restoring low quality corridors are widely advocated as watershed level water quality management options for protecting those ecosystem services. The two approaches, protection or restoration, should be viewed as complementary by watershed managers and provide a foundation for targeting highly functioning riparian corridors for protection or for identifying poorly functioning corridors for restoration. Ascertaining which strategy to use is often motivated by a specific ecosystem service, for example water quality, upon which watershed management is focused. We have previously reported on a spatially explicit model that focused on identifying riparian corridors that have specific characteristics that make them well suited for purposes of preservation and protection focused on water quality. Here we hypothesize that focusing on restoration, rather than protection, can be the basis for developing a watershed level strategy for improving water quality in urbanizing watersheds. Methods The model described here represents a geographic information system (GIS) based approach that utilizes riparian characteristics extracted from 40-meter wide corridors centered on streams and rivers. The model focuses on drinking water reservoir watersheds that can be analyzed at the sub-watershed level. Sub-watershed riparian data (vegetation, soil erodibility and surface slope) are scaled and weighted based on watershed management theories for water quality, and riparian restoration scores are assigned. Those scores are used to rank order riparian zones –the lower the score the higher the priority for riparian restoration. Results The model was applied to 90 sub-watersheds in the watershed of an important drinking water reservoir in north central Texas, USA. Results from this study area suggest that corridor scores were found to be most correlated to the amount of: forested vegetation, residential land use, soils in the highest erodibility class, and highest surface slope (r2 = 0.92, p < 0.0001). Scores allow watershed managers to rapidly focus on riparian corridors most in need of restoration. A beneficial feature of the model is that it also allows investigation of multiple scenarios of restoration strategies (e.g.,  revegetation, soil stabilization, flood plain leveling), giving watershed managers a tool to compare and contrast watershed level management plans.


2020 ◽  
Vol 20 (5) ◽  
pp. 1862-1870
Author(s):  
Jung Eun Lee ◽  
Seok-Jae Youn ◽  
Myeongseop Byeon ◽  
Soon-Ju Yu

Abstract In 2012, a large concentration of geosmin was found in the Paldang reservoir, which is the primary source of drinking water in Seoul, Korea. In June and September 2012, we measured the concentrations of cyanobacteria and actinomycetes, and geosmin, to identify the source of geosmin in the Paldang reservoir. A total of 68 water samples were collected from two sampling sites (Sambong, Paldang), and used to analyze the correlation between cyanobacteria, actinomycetes, and geosmin. The cell density attained a maximum of 24,722 cells/mL on August 11, 2012 and geosmin occurred at a high concentration of 3,934 ng/L on August 13 in Sambong. After July 31, 2012 a rapid increase in growth and cell density occurred with a peak value of 11,568 cells/mL on August 6, 2012. At the same time, the geosmin concentration increased to 3,157 ng/L in Paldang. The number of cyanobacteria positively correlated with geosmin concentration (R2 = 0.84, P &lt; 0.0001), while actinomycetes were not significantly correlated with geosmin (R2 = 0.01, P = 0.709). In addition, the number of actinomycetes was associated with increased turbidity (R = 0.507). Among the various water quality constituents, temperature affected cyanobacteria in the Paldang reservoir (R = 0.803). These results suggest that cyanobacteria are the main source of geosmin in the Paldang reservoir, which might be providing useful information for managing the unpleasant taste of its drinking water.


Sign in / Sign up

Export Citation Format

Share Document