Full scale case studies of a simplified aerated filter (BAF) for organics and nitrogen removal

2000 ◽  
Vol 41 (4-5) ◽  
pp. 1-4 ◽  
Author(s):  
J.J. Chen ◽  
D. McCarty ◽  
D. Slack ◽  
H. Rundle

The limitation of available land for wastewater treatment facilities has challenged environmental engineers in searching for efficient and effective treatment systems that will minimize space requirements for waste treatment. To meet these requirements, a fixed film biological process using a DeepBedTM filter for aerobic and anoxic treatment was developed. The innovative biotechnology uses sand as the media to which microorganisms attach and as the filter media for solids retention. The unique characteristics of the biosystem combine long sludge age and short hydraulic detention time and provide small footprints for the bioreactor. The novel technology has been successfully practiced for industrial and municipal wastewater treatment in three (3) continents. This article gives details of a US facility to treat coke plant effluent with high ammonia and phenol content, describes a plant in Taiwan for polishing plastic manufacturing wastewater by combining ozone and biofiltration, illustrates nitrogen removal from a semiconductor factory in Korea, and shows the results of a municipal treatment plant in Britain using BAF to pretreat peak loads from the dairy industry.

2013 ◽  
Vol 20 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Marketa Julinova ◽  
Jan Kupec ◽  
Roman Slavik ◽  
Maria Vaskova

Abstract A synthetic polymer, polyvinylpyrrolidone (PVP - E 1201) primarily finds applications in the pharmaceutical and food industries due to its resistance and zero toxicity to organisms. After ingestion, the substance passes through the organism unchanged. Consequently, it enters the systems of municipal wastewater treatment plants (WWTP) without decomposing biologically during the waste treatment process, nor does it attach (through sorption) to particles of activated sludge to any significant extent, therefore, it passes through the system of a WWTP, which may cause the substance to accumulate in the natural environment. For this reason the paper investigates the potential to initiate aerobic biodegradation of PVP in the presence of activated sludge from a municipal wastewater treatment plant. The following agents were selected as the initiators of the biodegradation process - co-substrates: acrylamide, N-acethylphenylalanine and 1-methyl-2-pyrrolidone, a substance with a similar structure to PVP monomer. The biodegradability of PVP in the presence of co-substrates was evaluated on the basis of biological oxygen demand (BOD) as determined via a MicroOxymax O2/CO2/CH4 respirometer. The total substrate concentration in the suspension equaled 400 mg·dm-3, with the ratio between PVP and the cosubstrate being 1:1, while the concentration of the dry activated sludge was 500 mg·dm-3. Even though there was no occurrence of a significant increase in the biodegradation of PVP alone in the presence of a co-substrate, acrylamide appeared to be the most effective type of co-substrate. Nevertheless, a recorded decrease in the slope of biodegradation curves over time may indicate that a process of primary decomposition was underway, which involves the production of metabolites that inhibit activated sludge microorganisms. The resulting products are not identified at this stage of experimentation.


Author(s):  
Ю.А. Егорова ◽  
С.В. Степанов ◽  
О.И. Нестеренко ◽  
Т.А. Стрелкова

Определены параметры реагентного удаления фосфора из сточных вод г. Самары. Исследования проводились методом пробного коагулирования исходной и осветленной сточной воды и иловой смеси аэротенков. Установлено, что при одинаковых дозах реагента наиболее глубокое удаление фосфора происходит из иловой смеси. При использовании сульфата алюминия удаление фосфора фосфатов происходило на 0,3–1,6 мг/л глубже, чем при обработке полиоксихлоридом алюминия «Аква-Аурат-30Ô», в зависимости от исходных концентраций. Содержание остаточного алюминия в очищенной воде при использовании «Аква-Аурат-30Ô» в среднем было на 8% ниже, чем при использовании сульфата алюминия, – 0,1680,221 мг/л против 0,1730,274 мг/л. Сравнительные результаты реагентной обработки коагулированием с применением флокулянтов и без них показали, что дополнительное дозирование флокулянта не привело к повышению эффективности удаления фосфора. Определено, что при концентрации фосфора фосфатов в иловой смеси 3,7–5,2 мг/л для достижения эффективности очистки выше 85% требовался 1,3–1,8-кратный избыток сульфата алюминия, а при более низких концентрациях 1,23–1,87 мг/л данная эффективность достигалась лишь при 3,1–5-кратном избытке реагента. Результаты исследований использованы в проекте реконструкции сооружений доочистки канализационных очистных сооружений г. Самары, которым предусмотрено химическое удаление фосфора в дополнение к улучшенному процессу биологического удаления фосфора. Принятая расчетная доза сульфата алюминия 10 мг/л по товарному продукту позволит снизить концентрацию фосфатов после основной ступени биологической очистки с 0,53 до 0,2 мг/л. The parameters of the chemical removal of phosphorus from wastewater in Samara have been determined. The studies were carried out by the method of trial coagulation of raw wastewater, primary effluent and mixed liquor from the aeration tanks. It was found that at the same doses of the chemical, the enhanced removal of phosphorus occurs from the sludge mixture. While using aluminum sulfate, the removal of phosphorus phosphates was enhanced by 0.3–1.6 mg/l more than while adding Aqua-Aurat-30TM aluminum polyoxychloride, depending on the initial concentrations. The concentration of residual aluminum in the effluent while using Aqua-Aurat-30TM was on average 8% lower than while using aluminum sulfate – 0.168–0.221 mg/l versus 0.173–0.274 mg/l. Comparative results of the chemical coagulation with the use of flocculants and without them showed that additional dosing flocculant did not result in an increase in the efficiency of phosphorus removal. It was determined that to achieve above 85% treatment efficiency at a phosphorus-phosphate concentration in the mixed liquor of 3.7–5.2 mg/l, a 1.3–1.8-fold excess of aluminum sulfate was required, and at lower concentrations of 1.23– 1.87 mg/l, this efficiency was achieved only with a 3.1–5-fold excess of the chemical. The research results were used in the project of upgrading a tertiary treatment plant at the Samara wastewater treatment facilities, that provided for the chemical removal of phosphorus in addition to the enhanced process of biological removal of phosphorus. The accepted calculated dose of aluminum sulfate 10 mg/l for a commercial product will reduce the concentration of phosphates after the main stage of biological treatment from 0.53 to 0.2 mg/l.


2017 ◽  
Vol 77 (4) ◽  
pp. 891-898 ◽  
Author(s):  
Maria Cristina Collivignarelli ◽  
Giorgio Bertanza ◽  
Alessandro Abbà ◽  
Silvestro Damiani

Abstract The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.


1996 ◽  
Vol 33 (12) ◽  
pp. 117-126 ◽  
Author(s):  
I. Purtschert ◽  
H. Siegrist ◽  
W. Gujer

In coordination with the EU-guidelines the large wastewater treatment plants in Switzerland have to be extended with enhanced nitrogen removal. Due to the existing plant configuration, the low COD/N ratio and dilute wastewater, denitrification supported by an external carbon source instead of extending the plant may be an interesting and cost effective solution for municipal wastewater treatment. At the wastewater treatment plant Zürich-Werdhölzli different experiments were performed with methanol addition to predenitrification from March to July 1994. The aim of this work was to evaluate the use of methanol as an alternative to plant extension to achieve a higher nitrogen removal efficiency. Therefore, two parallel denitrifying lanes were investigated, one served for methanol addition experiments and the other as a control. The effect of oxygen input into the anoxic zone due to influent, return sludge and mixing was investigated, too. The results show that nitrogen removal efficiency can be substantially increased as compared to the reference lane. The adaptation period for methanol degradation was only a few days and the process was relatively stable. Based on total nitrogen in the inflow, the average denitrification was 55% with methanol addition and 35% without methanol. The yield coefficient YCOD was 0.4 g CODX g−1 CODMe. Due to the small net growth rate of the methanol degraders the denitrification capacity is relatively low and nitrate peak loads cannot be fully denitrified. Hence, methanol as a carbon source requires more or less constant dosing. To prevent nitrate limitation, methanol addition should be controlled by the anoxic nitrate concentrations.


2013 ◽  
Vol 361-363 ◽  
pp. 555-561
Author(s):  
Lei Zhang ◽  
Xun Wang

Efficient sedimentation tank and Biological Aerated Filter are introduced in extension project in Wuhan Huangpu road WWTP,the first-stage project pretreatment capacity of which is 10×104m3/d.This process provides high treatment efficiency while occupying a small footprintnoise reduction and has little environmental impact.The effluent quality meets the first level A criteria specified in Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB18918-2002).This project demonstrates the successful handling of the environmental issues arising from the construction of wastewater treatment plantin highly urbanized area


2001 ◽  
Vol 44 (1) ◽  
pp. 113-120 ◽  
Author(s):  
G. Esposito ◽  
C. Bastianutti ◽  
G. Bortone ◽  
F. Pirozzi ◽  
S. Sgroi

The effects of suppressing primary sedimentation on nitrogen removal efficiency of a pre-denitrification system have been evaluated for a large municipal wastewater treatment plant. Simulations have been carried out using the STOAT model. For both the process schemes with and without primary sedimentation, nitrification efficiencies are calculated for increasing influent loads of COD, total N and suspended solids. The sensitivity analysis shows that for the usual carbon to nitrogen ratios in the raw influent both the process schemes allow the requested removal efficiencies, whereas for significantly high C/N ratios the scheme with primary sedimentation is preferable.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 527
Author(s):  
Mengmeng Liu ◽  
Meixue Chen ◽  
Rong Qi ◽  
Dawei Yu ◽  
Min Yang ◽  
...  

Aiming at providing cost-effective approach for upgrading the existing municipal wastewater treatment plants in the cold region of China to meet more stringent discharge standards of nitrogen removal, a full-scale sewage treatment plant with the CASS process was selected through focusing on biological process, key equipment and hydrodynamics in bioreactors by the activated sludge model 1 (ASM1) and computational fluid dynamics (CFD) model. Influent COD fractions and the key characteristic parameters (YH and bH) of the activated sludge were determined through the respirometry at temperatures of 10 °C and 20 °C, respectively. The layout of submerged agitator installation in the bioreactor of the CASS process was optimized through CFD simulation. The calculation of the average relative deviation (less than 20%) between simulated data and the operation data, demonstrated that the ASM1 model could be reasonably used in the wastewater treatment plant simulation. The upgrade solution based on modelling of ASM1 and CFD was successfully applied in practice, which not only made the effluent COD, NH4+-N and TN concentrations meet with the discharge standard of Grade I-A, but also reduced the energy consumption by 25% and 16.67% in summer and winter, respectively. After upgrading, microbial diversity increased in both summer and winter, with an especially significant increase of the relative abundance of denitrifying bacteria.


Sign in / Sign up

Export Citation Format

Share Document