scholarly journals Initiating Biodegradation of Polyvinylpyrrolidone in an Aqueous Aerobic Environment: Technical Note / Zainicjowanie Biodegradacji Poliwinylopirolidonu W Środowisku Wodno-Tlenowym: Notatki Techniczne

2013 ◽  
Vol 20 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Marketa Julinova ◽  
Jan Kupec ◽  
Roman Slavik ◽  
Maria Vaskova

Abstract A synthetic polymer, polyvinylpyrrolidone (PVP - E 1201) primarily finds applications in the pharmaceutical and food industries due to its resistance and zero toxicity to organisms. After ingestion, the substance passes through the organism unchanged. Consequently, it enters the systems of municipal wastewater treatment plants (WWTP) without decomposing biologically during the waste treatment process, nor does it attach (through sorption) to particles of activated sludge to any significant extent, therefore, it passes through the system of a WWTP, which may cause the substance to accumulate in the natural environment. For this reason the paper investigates the potential to initiate aerobic biodegradation of PVP in the presence of activated sludge from a municipal wastewater treatment plant. The following agents were selected as the initiators of the biodegradation process - co-substrates: acrylamide, N-acethylphenylalanine and 1-methyl-2-pyrrolidone, a substance with a similar structure to PVP monomer. The biodegradability of PVP in the presence of co-substrates was evaluated on the basis of biological oxygen demand (BOD) as determined via a MicroOxymax O2/CO2/CH4 respirometer. The total substrate concentration in the suspension equaled 400 mg·dm-3, with the ratio between PVP and the cosubstrate being 1:1, while the concentration of the dry activated sludge was 500 mg·dm-3. Even though there was no occurrence of a significant increase in the biodegradation of PVP alone in the presence of a co-substrate, acrylamide appeared to be the most effective type of co-substrate. Nevertheless, a recorded decrease in the slope of biodegradation curves over time may indicate that a process of primary decomposition was underway, which involves the production of metabolites that inhibit activated sludge microorganisms. The resulting products are not identified at this stage of experimentation.

2020 ◽  
Vol 15 (2) ◽  
pp. 515-527
Author(s):  
L. Desa ◽  
P. Kängsepp ◽  
L. Quadri ◽  
G. Bellotti ◽  
K. Sørensen ◽  
...  

Abstract Many wastewater treatment plants (WWTP) in touristic areas struggle to achieve the effluent requirements due to seasonal variations in population. In alpine areas, the climate also determines a low wastewater temperature, which implies long sludge retention time (SRT) needed for the growth of nitrifying biomass in conventional activated sludge (CAS). Moreover, combined sewers generate high flow and dilution. The present study shows how the treatment efficiency of an existing CAS plant with tertiary treatment can be upgraded by adding a compact line in parallel, consisting of a Moving Bed Biofilm Reactor (MBBR)-coagulation-flocculation-disc filtration. This allows the treatment of influent variations in the MBBR and a constant flow supply to the activated sludge. The performance of the new 2-step process was comparable to that of the improved existing one. Regardless significant variations in flow (10,000–25,000 m3/d) and total suspended solids (TSS) (50–300 mg/L after primary treatment) the effluent quality fulfilled the discharge requirements. Based on yearly average effluent data, TSS were 11 mg/L, chemical oxygen demand (COD) 27 mg/L and total phosphorus (TP) 0.8 mg/L. After the upgrade, ammonium nitrogen (NH4-N) dropped from 4.9 mg/L to 1.3 mg/L and the chemical consumption for phosphorus removal was reduced.


Membranes ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 421
Author(s):  
Dimitra C. Banti ◽  
Michail Tsangas ◽  
Petros Samaras ◽  
Antonis Zorpas

Membrane bioreactor (MBR) systems are connected to several advantages compared to the conventional activated sludge (CAS) units. This work aims to the examination of the life cycle environmental impact of an MBR against a CAS unit when treating municipal wastewater with similar influent loading (BOD = 400 mg/L) and giving similar high-quality effluent (BOD < 5 mg/L). The MBR unit contained a denitrification, an aeration and a membrane tank, whereas the CAS unit included an equalization, a denitrification, a nitrification, a sedimentation, a mixing, a flocculation tank and a drum filter. Several impact categories factors were calculated by implementing the Life Cycle Assessment (LCA) methodology, including acidification potential, eutrophication potential, global warming potential (GWP), ozone depletion potential and photochemical ozone creation potential of the plants throughout their life cycle. Real data from two wastewater treatment plants were used. The research focused on two parameters which constitute the main differences between the two treatment plants: The excess sludge removal life cycle contribution—where GWPMBR = 0.50 kg CO2-eq*FU−1 and GWPCAS = 2.67 kg CO2-eq*FU−1 without sludge removal—and the wastewater treatment plant life cycle contribution—where GWPMBR = 0.002 kg CO2-eq*FU−1 and GWPCAS = 0.14 kg CO2-eq*FU−1 without land area contribution. Finally, in all the examined cases the environmental superiority of the MBR process was found.


Author(s):  
Bilge Alpaslan Kocamemi ◽  
Halil Kurt ◽  
Ahmet Sait ◽  
Fahriye Sarac ◽  
Ahmet Mete Saatci ◽  
...  

Following the announcement of SARS-CoV-2 worldwide pandemic spread by WHO on March 11, 2020, wastewater based epidemiology received great attention in several countries: The Netherlands [Medama et al., 2020; K-Lodder et al., 2020], USA [Wu et al., 2020; Memudryi et al., 2020], Australia [Ahmed et al., 2020], France [Wurtzer et al., 2020], China [Wang et al., 2020], Spain [Randazzo et al., 2020; Walter et al., 2020], Italy (La Rosa et al., 2020; Rimoldi et al., 2020) and Israel [Or et al., 2020], performed analysis in wastewaters by using different virus concentration techniques. Turkey took its place among these countries on 7th of May, 2020 by reporting SARS-CoV-2 RT-qPCR levels at the inlet of seven (7) major municipal wastewater treatment plants (WWTPs) of Istanbul [Alpaslan Kocamemi et al., 2020], which is a metropole with 15.5 million inhabitants and a very high population density (2987 persons/km2) and having about 65 % of Covid-19 cases in Turkey. Sludges that are produced in WWTPs should be expected to contain SARS-CoV-2 virus as well. There has not yet been any study for the fate of SAR-CoV-2 in sludges generated from WWTPs. Knowledge about the existing of SARS-CoV-2 in sludge may be useful for handling the sludge during its dewatering, stabilizing and disposal processes. This information will also be valuable in case of sludges that are used as soil conditioners in agriculture or sent to landfill disposal. In wastewater treatment plants, generally two different types of sludges are generated; primary sludge (PS) and waste activated sludge (WAS). PS forms during the settling of wastewater by gravity in the primary settling tanks. Little decomposition occurs during primary sludge formation. Since most of the inorganic part of the wastewater is removed in the earlier grit removal process, the PS consists of mainly organic material that settles. The PS is about 1-2 % solids by weight. In the biological treatment part of the WWTPs, the biomass that forms in the anaerobic, anoxic and oxic zones of the process is settled in final clarifiers by gravity and returned to the beginning of the biological process so that it is not washed off. The waste activated sludge (WAS) is the excess part of the biomass that grows in this secondary treatment process. It has to be removed from the process not to increase the mixed liquor suspended solids concentration (bacteria concentration) in the secondary process more than a fixed value. The WAS is about 0.6 - 0.9 % solids by weight. This work aims to find whether SARS-CoV-19 is present in the PS and WAS before it is dewatered and sent to anaerobic or aerobic digester processes or to thermal drying operations. For this purpose, on the 7th of May 2020, two (2) PS samples were collected from Ambarlı and Tuzla WWTPs, seven (7) WAS samples were collected from Terkos, Ambarlı, Atakoy I & II, Pasakoy II, Buyukcekmece and Tuzla I WWTPs. Polyethylene glycol 8000 (PEG 8000) adsorption [Wu et al., 2020] SARS-Cov-2 concentration method was used for SARS-CoV-2 concentration after optimization. [Alpaslan Kocamemi et al., 2020]. Real time RT-PCR diagnostic panel validated by US was used to quantify SARS-CoV-2 RNA in primary and waste activated sludge samples taken from WWTPs in Istanbul. All samples were tested positive. Titers of SARS-CoV-2 have been detected ranging copies between 1.17E4 to 4.02x104 per liter.


2017 ◽  
Vol 77 (4) ◽  
pp. 891-898 ◽  
Author(s):  
Maria Cristina Collivignarelli ◽  
Giorgio Bertanza ◽  
Alessandro Abbà ◽  
Silvestro Damiani

Abstract The wastewater treatment process is based on complex chemical, physical and biological mechanisms that are closely interconnected. The efficiency of the system (which depends on compliance with national regulations on wastewater quality) can be achieved through the use of tools such as monitoring, that is the detection of parameters that allow the continuous interpretation of the current situation, and experimental tests, which allow the measurement of real performance (of a sector, a single treatment or equipment) and comparison with the following ones. Experimental tests have a particular relevance in the case of municipal wastewater treatment plants fed with a strong industrial component and especially in the case of plants authorized to treat aqueous waste. In this paper a case study is presented where the application of management tools such as careful monitoring and experimental tests led to the technical and economic optimization of the plant: the main results obtained were the reduction of sludge production (from 4,000 t/year w.w. (wet weight) to about 2,200 t/year w.w.) and operating costs (e.g. from 600,000 €/year down to about 350,000 €/year for reagents), the increase of resource recovery and the improvement of the overall process performance.


1992 ◽  
Vol 25 (4-5) ◽  
pp. 413-419
Author(s):  
A. V. Ghirardini ◽  
F. Avezzù ◽  
P. Cescon

In a previous paper the A.A. used a mathematical model to describe the complex mechanisms affecting heavy metals distribution between liquid and solid phases in order to predict the quality of effluents of an activated sludge biological treatment system. In the present work the mathematical model is employed to depict the behaviour of particulate and soluble zinc in large municipal wastewater treatment plants for which operating data were available in the existing literature. The results obtained by this model, compared with experimental data, describe zinc behaviour in activated sludge systems satisfactorily. The behaviour of some other metals (zinc, nickel, copper, chromium), studied in solid and liquid3 flows of a municipal wastewater treatment plant in the north-east of Italy (5000 m3/day), is satisfactorily simulated.


2016 ◽  
Vol 75 (6) ◽  
pp. 1261-1269 ◽  
Author(s):  
Fardin Abiri ◽  
Narges Fallah ◽  
Babak Bonakdarpour

In the present study the feasibility of the use of a bacterial batch sequential anaerobic–aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic–aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic–aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.


2013 ◽  
Vol 8 (2) ◽  
pp. 315-322
Author(s):  
A. Sperlich ◽  
P. Geyer ◽  
R. Gnirss ◽  
M. Barjenbruch

Operation of a pilot-scale dual-media biological filter as post-denitrification step in a municipal wastewater treatment plant was investigated for 28 months. In order to identify key design parameters, filtration rate, external carbon dosing concentration and strategy as well as backwash frequency were varied. The results show that dual-media biological filtration is able to achieve effluent concentrations of total suspended solids (TSS) ≤2 mg/L and NO3-N ≤ 5 mg/L. TSS removal also leads to a reduction of particulate bound phosphorus and chemical oxygen demand without dosing any precipitant. Soluble reactive phosphorus is required for growth of the denitrifying bacteria and reduced from 0.4 to 0.3 mg/L in the filter effluent, corresponding to approximately 0.02 g P/g NOx-N removed. Depending on NOx-N loading and carbon dosage, average denitrification rates of 0.5–1.0 kg NOx-N/m3*d were achieved in different operational phases. Seasonally varying nitrite formation and breakthrough in the filter effluent were observed and could not be controlled by adjusting carbon dosage and backwash frequency. Effective operational strategies to prevent nitrite breakthrough at NOx-N loads in the range of 1–2 kg NOx-N/m3*d and high influent O2 levels are therefore needed.


1994 ◽  
Vol 30 (4) ◽  
pp. 211-214 ◽  
Author(s):  
E. Brands ◽  
M. Liebeskind ◽  
M. Dohmann

This study shows a comparison of important parameters for dynamic simulation concerning the highrate and low-rate activated sludge tanks of several municipal wastewater treatment plants. The parameters for the dynamic simulation of the single-stage process are quite well known, but parameters for the high-ratellow-rate activated sludge process are still missi ng, although a considerable number of wastewater treatment plants are designed and operated that way. At present any attempt to simulate their operation is restricted to the second stage due to missing data concerning growth rate, decay rate, yield coefficient and others.


1998 ◽  
Vol 38 (1) ◽  
pp. 303-310 ◽  
Author(s):  
V. Naidoo ◽  
V. Urbain ◽  
C. A. Buckley

Denitrification kinetics and wastewater characterization of eight different plants in Europe are discussed. Denitrification batch tests revealed three distinct rates except in the cases of Plaisir, Rostock and Orense where 4 rates were observed. The latter three plants revealed atypical rapid initial rates which were between 7 and 21 mgN/gVSS.h. All denitrification kinetics under non-limiting carbon conditions revealed fast first rates which ranged between 3.0 and 7.3 mgN/gVSS.h. Acetate was used to simulate denitrification kinetics with readily biodegradable COD present. Two subsequent rates were observed. Rates 2 and 3 ranged between 2 and 3 mgN/gVSS.h, and 1 and 2 mgN/gVSS.h, respectively. The RBCOD fraction varied between 10 and 19%, except for one of the plants where the value determined was 7%.


Sign in / Sign up

Export Citation Format

Share Document