Potential of anaerobic digestion of complex waste(water)

2001 ◽  
Vol 44 (8) ◽  
pp. 115-122 ◽  
Author(s):  
G. Zeeman ◽  
W. Sanders

Although they differ greatly in origin complex waste(water)s mainly consist of proteins, lipids, carbohydrates and sometimes lignin in addition. Hydrolysis is the first and generally rate-limiting step in the process of anaerobic digestion of particulate organic substrates. Hydrolysis of particulate polymers can be described by Surface Based Kinetics, but for use in practice the empirical first order relation is advised. Unlike the hydrolysis of protein and carbohydrate, lipid hydrolysis is hardly occurring in the absence of methanogenesis. The latter is probably a physical rather than a biological process and affects the choice for either a one- or a two-step (phase) anaerobic reactor. In the chain of collection and transport, complex wastes often become complex wastewaters simply because of dilution. Dilution not only changes the reactor technology to be applied but also complicates the post-treatment and possibilities for resource recovery. Combining concentrated with diluted waste streams will almost always end up in much more complicated treatment technologies.

Author(s):  
Jakub Drewnowski ◽  
Jacek Makinia ◽  
Lukasz Kopec ◽  
Francisco-Jesus Fernandez-Morales

The biodegradation of particulate substrates starts by a hydrolytic stage. Hydrolysis is a slow reaction and usually becomes the rate limiting step of the organic substrates biodegradation. The objective of this work was to evaluate a novel hydrolysis concept based on a modification of the activated sludge model (ASM2d) and to compare it with the original ASM2d model. The hydrolysis concept was developed in order to accurately predict the use of internal carbon sources in enhanced biological nutrient removal (BNR) processes at a full scale facility located in northern Poland. Both hydrolysis concepts were compared based on the accuracy of their predictions for the main processes taking place at a full-scale facility. From the comparison, it was observed that the modified ASM2d model presented similar predictions to those of the original ASM2d model on the behavior of chemical oxygen demand (COD), NH4-N, NO3-N, and PO4-P. However, the modified model proposed in this work yield better predictions of the oxygen uptake rate (OUR) (up to 5.6 and 5.7%) as well as in the phosphate release and uptake rates.


1985 ◽  
Vol 27 (10) ◽  
pp. 1482-1489 ◽  
Author(s):  
Tatsuya Noike ◽  
Ginro Endo ◽  
Juu-En Chang ◽  
Jun-Ichi Yaguchi ◽  
Jun-Ichiro Matsumoto

2013 ◽  
Vol 67 (2) ◽  
pp. 293-298 ◽  
Author(s):  
C. Keating ◽  
D. Cysneiros ◽  
T. Mahony ◽  
V. O'Flaherty

In this study, the ability of various sludges to digest a diverse range of cellulose and cellulose-derived substrates was assessed at different temperatures to elucidate the factors affecting hydrolysis. For this purpose, the biogas production was monitored and the specific biogas activity (SBA) of the sludges was employed to compare the performance of three anaerobic sludges on the degradation of a variety of complex cellulose sources, across a range of temperatures. The sludge with the highest performance on complex substrates was derived from a full-scale bioreactor treating sewage at 37 °C. Hydrolysis was the rate-limiting step during the degradation of complex substrates. No activity was recorded for the synthetic cellulose compound carboxymethylcellulose (CMC) using any of the sludges tested. Increased temperature led to an increase in hydrolysis rates and thus SBA values. The non-granular nature of the mesophilic sludge played a positive role in the hydrolysis of solid substrates, while the granular sludges proved more effective on the degradation of soluble compounds.


2002 ◽  
Vol 45 (12) ◽  
pp. 339-346 ◽  
Author(s):  
G. Eremektar ◽  
O. Karahan-Gul ◽  
F. Germirli-Babuna ◽  
S. Ovez ◽  
H. Uner ◽  
...  

Corn wet mill effluents are studied in terms of their characteristics relevant for biological treatment. They have a high COD of mainly soluble and biodegradable nature, with practically no soluble inert components. They generate a relatively high level of soluble residual metabolic products, which affects the choice of the appropriate biological treatment and favors aerobic activated sludge process. Experimental assessment of process kinetics yields typical values. Hydrolysis of the slowly biodegradable COD, the rate limiting step for the utilization of substrate, is characterized by an overall rate coefficient, which is within the range commonly associated for the hydrolysis of starch.


2003 ◽  
Vol 48 (4) ◽  
pp. 217-220 ◽  
Author(s):  
H.M. El-mashad ◽  
G. Zeeman ◽  
W.K.P. van Loon ◽  
G.P.A. Bot ◽  
G. Lettinga

The anaerobic digestion of solid animal wastes has been studied in an accumulation system (AC) at a filling time of 60 days followed by about 50 days batch digestion at 40 and 50°C. Poor mixing conditions during anaerobic digestion of solid wastes promote stratification of the substrate and intermediate products along the reactor height. The effect of layers stratification has also been followed in the AC system. The results showed a pronounced stratification of both CODdis and VFA concentrations along the AC system height. The temperature had a minor effect on the methane yield. The results also showed that methanogenesis was rate limiting in the AC system while the hydrolysis was the rate-limiting step during batch digestion.


1981 ◽  
Vol 27 (12) ◽  
pp. 1260-1266 ◽  
Author(s):  
B. H. Kim ◽  
J. W. T. Wimpenny

Growth factor requirements, growth kinetics, and the ability to produce the enzyme cellulase were examined in the cellulolytic bacterium Cellulomonas flavigena KIST 321. The organism was found to require only thiamine for growth in mineral salts medium containing simple sugars or cellulose. Growth rates on various carbohydrates suggested that disruption of the crystalline structure was the rate-limiting step in the utilization of crystalline cellulose, and hydrolysis of the polymer itself was as rapid as the uptake of the hydrolytic product. When the organism was grown on cellulose the cellulolytic activity appeared to be bound to the cell at the beginning of the exponential growth phase: only after this did cell-free enzyme activity appear. The cell-free enzyme appeared to be unstable, and its activity decreased at the beginning of the stationary phase.


1982 ◽  
Vol 203 (1) ◽  
pp. 149-153 ◽  
Author(s):  
P R Levison ◽  
G Tomalin

Subsites in the S2-S4 region were identified in human plasma kallikrein. Kinetic constants (kcat., Km) were determined for a series of seven extended N-aminoacyl-L-arginine methyl esters based on the C-terminal sequence of bradykinin (-Pro-Phe-Arg) or (Gly)n-Arg. The rate-limiting step for the enzyme-catalysed reaction was found to be deacylation of the enzyme. It was possible to infer that hydrogen-bonded interactions occur between substrate and the S2-S4 region of kallikrein. Insertion of L-phenylalanine at residue P2 demonstrates that there is also a hydrophobic interaction with subsite S2, which stabilizes the enzyme-substrate complex. The strong interaction demonstrated between L-proline at residue P3 and subsite S3 is of greatest importance in the selectivity of human plasma kallikrein. The purification of kallikrein from Cohn fraction IV of human plasma is described making use of endogenous Factor XIIf to activate the prekallikrein. Kallikreins I (Mr 91 000) and II (Mr 85 000) were purified 170- and 110-fold respectively. Kallikrein I was used for the kinetic work.


Sign in / Sign up

Export Citation Format

Share Document