Reuse of water treatment plant sludge and dam sediment in brick-making

2001 ◽  
Vol 44 (10) ◽  
pp. 273-277 ◽  
Author(s):  
C. Huang ◽  
J.R. Pan ◽  
K.-D. Sun ◽  
C.-T. Liaw

In this study, an attempt was made to use water treatment plant (WTP) sludge and dam sediment as raw materials for brick-making through the sintering process. The sinter of dam sediment fired at 1,050°C had a less than 15% ratio water absorption, and its compressive strength and bulk density met the Chinese National Standard (CNS) for first level brick. The WTP sludge sinter made under the same operating condition exhibited higher water absorption, larger shrinkage, but poorer compressive strength. When fired at 1,100°C, the shrinkage of the WTP sludge sinter was as high as 45%, although its compressive strength and water absorption of WTP sludge brick still met the standard for the first level brick. To reuse WTP sludge in an economical way, mixtures of various proportions of WTP sludge to dam sediment are used as raw materials. A satisfactory result was achieved when the ratio of the WTP sludge was less than 20% of the mixture. Results of tests indicated that the sinter of dam sediments which are fired at a temperature of 1000~1100°C has reached the requirement for tile brick.

2015 ◽  
Vol 77 (32) ◽  
Author(s):  
Mohd Asri Md Nor ◽  
Alia Syafiqah Abdul Hamed ◽  
Faisal Hj Ali ◽  
Ong Keat Khim

Every year, large quantity of water treatment sludge (WTS) is produced from water treatment plant in Malaysia. Sanitary landfill disposal of sludge at authorized sites is the common practice in Malaysia. However, searching the suitable site for landfill is the major problem as the amount of sludge produced keeps on increasing. Reuse of the sludge could be an alternative to disposal. This study investigated the reusability of WTS as brick making material. The performance of clay-WTS bricks produced by mixing clay with different percentages of WTS with increments of 20% from 0% up to 100% was investigated. Each molded brick with optimum moisture content was pressed under constant pressure, oven-dried at 100˚C for 24 hours followed by heating at 600˚C for 2 hours and 1000˚C for 3 hours. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis were used to characterize clay, WTS and clay-WTS bricks.  The performance of the bricks were evaluated with firing shrinkage, loss on ignition (LOI), water absorption, bulk density, and compressive strength tests. Increasing the sludge content results in a decrease of brick firing shrinkage, and increase of water absorption and compressive strength. The results revealed that the brick with 100% by weight of sludge could generate the highest compressive strength of 17.123N/mm2. It can be concluded that the bricks with 20 to 100% of water treatment sludge comply with the Malaysian Standard MS7.6:1972, which can fulfill the general requirement for usage of clay bricks in wall construction.


2019 ◽  
Vol 18 (3) ◽  
pp. 727-738
Author(s):  
Vaishali Sahu ◽  
Rounak Attri ◽  
Prashast Gupta ◽  
Rakesh Yadav

Purpose This paper aims to study the effect of the addition of water treatment plant sludge (WTPS) and processed tea waste (PTW) on the properties of burnt clay bricks. The reuse of WTP sludge as a raw material for brick production is a long-term approach, to sludge disposal, for economic and environmental sustainability. Sludge have been added at 10, 20, 30 and 40% and processed tea waste at 5% (by weight) in replacement of clay for brick manufacturing. Each batch of hand-moulded bricks was fired in a heat controlled furnace at a temperature of 990°C. The compressive strength has been found to increase with the sludge content, however, a slight decrease in compressive strength was observed with tea waste addition. Further, PTW addition has improved the thermal insulation of bricks as compared to controlled bricks. The study shows that 40% WTPS, 5% PTW and 55% natural clayey soil can be considered as an optimum mix for bricks with good compressive strength as well as improved thermal insulation property. Design/methodology/approach Four different mixing ratios of sludge at 10, 20, 30 and 40% of the total weight of sludge-clay mixtures were used to make bricks. Similarly, PTW was investigated as a substitute of natural clayey soil in brick manufacturing. Each batch of hand-moulded bricks was fired in a heat controlled furnace at a temperature of 990°C. The physical, mechanical and engineering properties of the produced WTPS bricks and PTW bricks were determined and evaluated according to various Indian Standard Codes of Specification for burnt clay bricks and certain reference books. Findings The results exhibited that WTP sludge and PTW can be used to produce good quality brick for various engineering applications in construction and building. Increasing the sludge content increases the compressive strength. Moreover, thermal insulation of PTW bricks depicted an upward trend when compared to controlled bricks. Hence, an optimum mixture of 40% WTPS, 5% PTW and 55% natural clayey soil was found, at which bricks showed good compressive strength as well as improved thermal insulation property of the building material. Research limitations/implications The present work provides a sustainable solution for disposal of WTP sludge and tea waste. Utilization of these waste materials in brick manufacturing is viable and economic solution. Practical implications Bricks with 40% WTP sludge and 5% processed tea waste proved to be economic, technically sound for construction purposes with added thermal insulation properties. Social implications Bulk amount of waste such as WTP sludge is a threat to society owing to its environmental implications of disposal. Authors propose to use WTP sludge and tea waste for brick manufacturing and provide a solution to its disposal. Originality/value Water treatment plant sludge along with tea waste have not been tried for brick manufacturing so far. Hence, the composition is new in itself and also have resulted into good performance.


2014 ◽  
Vol 979 ◽  
pp. 94-97
Author(s):  
Sutas Janbuala ◽  
Wittawat Ratanathavorn ◽  
Mana Aermbua ◽  
Arpapan Satayavibul ◽  
Udomsak Kitthawee

This research aims to study the effect of sludge from water treatment plants on the properties of pottery such as density, compressive strength, water absorption, and porosity.The composition of sludge from water treatment plants added to the clay varies, at percentages of 0%, 10%, 20%, 30%, 40%, and 50%, controlled by weight. The results showed that the composition of 10% by weight of sludge from the water treatment plant yields the ultimate pottery properties, with 12.63 MPa of compressive strength, 1.85 g/cm3 of density, 14.24% of water absorption, and 26.34% of porosity.


2017 ◽  
Vol 29 (12) ◽  
pp. 2665-2670
Author(s):  
Soleha Mohamat Yusuff ◽  
K.K. Ong ◽  
W.M.Z. Wan Yunus ◽  
A. Fitrianto ◽  
M. Ahmad ◽  
...  

2013 ◽  
Vol 777 ◽  
pp. 60-64 ◽  
Author(s):  
Lan Yang ◽  
Yi Xuan Han ◽  
Dong Tian Wang

In this study, a novel combination of ultrasound with acid for coagulant recovery from drinking water treatment plant sludge (DWTPS) is investigated in view of improving the coagulant recovery efficiencies. Optimal recovery conditions, a sulfuric acid concentration of 2.0 M, an ultrasonic treatment time of 30 minutes, an ultrasound power of 1000 W and stirring speed of 1000 rpm, have been found in the lab test. The aluminum recovery rates from acidification process with assistance of ultrasound increased by approximately 20% compared with that of acidification only. It was found that the synergistic effects between acid with ultrasound contribute to improving the treatment efficiency.


Sign in / Sign up

Export Citation Format

Share Document